

Multi-Graph Convolutional Network for Relationship-Driven Stock Movement Prediction

ICPR2020

Jiexia Ye, Juanjuan Zhao, Kejiang Ye, Chengzhong Xu Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences State Key Lab of IOTSC, University of Macau

Background

1 A little improvement of stock prediction accuracy might yield a huge gain.

2 Both traditional finance and modern behavior finance believe that fluctuations of stock prices are information-driven.

3 Researches make substantial effort on modeling correlations between various information and stock prices.

Related Works

1 The input features of most works are mainly based on historical market data (e.g. stock prices, trading volume).

2 Other types of information are complementary to enrich the input features, such as public news, texts from social medias.

3 Most of the works above mainly focused on combining a single stock's historical records with other textual

information but overlooked the correlations among stocks.

Challenges

1 Design appropriate representation for corporation relationships

2 Design a model without independent instance assumption to extract the cross-correlation among stocks

3 Jointly considering historical observation and the cross-correlation with related stocks for stock prediction

Part 02

Methodology

The architecture of Multi-GCGRU

Stock Graphs

1 Shareholding Graph: The edge weight a_{ij} is shareholding ratio in range of [0,1]

- 2 Industry Graph: The influence from company *i* to company *j* in the same industry is denoted as $a_{ij} = \frac{M_i}{M_i}$, where *M* denotes the firm size
- **3** Topicality Graph: if company *i* owns M_i topicalities, company *j* owns M_j topicalities and they share T_{ij} topicalities, the connection strength from *i* to *j* is denoted as $a_{ij} = \frac{T_{ij}}{M_i}$

Multi-

GCN

GRU

Multi-Graph Convolutional Network

傅学驾志 格物明德

Gated Reccurent Unit

傅学驾志 格物明德

Part 03

Experiments

Datasets and Experiment Design

Datasets

CSI300, CSI500

Time Range: 2015/07/01-2019/12/30

Input Features: opening price, high price, low price, trading

amount

Relationship Features: shareholder and shareholding ratio, industry category, registered capital, topicality.

Labels: closing price rising=1, closing price falling=0

The Split of Dataset

Tra	aining	Set 70% Te	st Set 20%	Validation	Set 10%
Ir	ndexes	Training set	Validation set	Testing set	Total
C	SI 500	383,719	54,817	109,633	548,169
C	SI 300	225,209	32,173	64,345	321,727

Experiment Design

Does our proposed model provide a better solution to incorporate the cross effect?

Which kind of corporation relationship is more effective for stock prediction and why?

How does the hyperparameter affect the model performance?

博学驾志 格物明德

Datasets

Model

Comparison

Model

Ablation

Hyper

parameter

Model Comparison

Input Easture	Madala	CSI300						CSI500					
input reature	widdels	Accuracy	Precision	Recall	F1	MCC	Accuracy	Precision	Recall	F1	MCC		
	LR	0.5145	0.9746	0.5133	0.6724	0.0228	0.5149	0.9723	0.5148	0.6732	0.0117		
	SVM	0.5197	0.9498	0.5165	0.6691	0.0412	0.5253	0.9662	0.5202	0.6763	0.0636		
Uistorical Decords	RF	0.5375	0.9298	0.5271	0.6728	0.0957	0.5433	0.9900	0.5294	0.6899	0.1587		
Historical Records	ANN	0.5191	0.9724	0.5158	0.6740	0.0463	0.5202	0.9900	0.5170	0.6792	0.0576		
	LSTM	0.5435	0.9756	0.5291	0.6861	0.1443	0.5461	0.9662	0.5318	0.6860	0.1384		
	GCN-S	0.5472	0.9609	0.5317	0.6845	0.1421	0.5463	0.9675	0.5423	0.6950	0.0717		
	Multi-GCGRU	0.5754	0.9603	0.5484	0.6981	0.2171	0.5885	0.9894	0.5658	0.7199	0.2377		

1 Linear Regression performs the worst for it can only capture linear relationship.

2 Among machine learning, random forest perform the best, for it can model randomness in stock price.

3 LSTM performs better than ANN for it can capture the temporal dependency in stock prediction.

4 Our Multi-GCGRU performs the best for it not only captures non-linearity but also temporal dependency

and cross-effect among stocks.

Conclusion Cross effect does matter!!!

Datasets

Model Comparison

Model

Ablation

Hyper

parameter

Model Ablation

		M - 1-1-	CSI300				CSI500					
	Input Feature	Models	Accuracy	Precision	Recall	F1	MCC	Accuracy	Precision	Recall	F1	MCC
Datasets	Historical Records	GCGRU-S	0.5505	0.9321	0.5346	0.6795	0.1338	0.5521	0.9635	0.5458	0.6969	0.0938
	& Corporation	GCGRU-I	0.5598	0.9561	0.5392	0.6895	0.1739	0.5678	0.9814	0.5540	0.7082	0.1655
	Relationships	GCGRU-T	0.5628	0.9512	0.5412	0.6899	0.1782	0.5751	0.9837	0.5581	0.7122	0.1916
	Renarionshipo	GCGRU-D	0.5602	0.9442	0.5402	0.6871	0.1667	0.5697	0.9844	0.5549	0.7097	0.1756
		Multi-GCGRU	0.5754	0.9603	0.5484	0.6981	0.2171	0.5885	0.9894	0.5658	0.7199	0.2377
Model					_							
Comparison	CSI500-Shareholding C	SI500-Industry CS	51500-Topicality	1.00	1 Shai	reholdin	g effect	: perform:	s worst. To	opicality	effect p	erforms b
	· 0.75	- 0.75	Star Sector	0.75	— — 1			• • •	• •			
	- 0.50	- 0.50		0.50	2 The	aenser	the mat	rix is, the	more into	ormation	it carrie	es.
	- 0.25	- 0.25		0.25	Thre	e matri	res nerf	orm hette	er than an	v sinale	matrix	
Model	- 0.00	- 0.00	A STOCKED WAS DOLLAR.	0.00			ces peri			y single	matrix.	
Ablation	CSI300-Shareholder C	SI300-Industry CS	51300-Topicality	1.00	4 The	perform	nance of	f data-dri	ven matrix	k is simil	ar to a s	single
	- 0.75 - 0.50		0.75	Pre-defined matrix but with less data.								
Hyper	- 0.25	- 0.25		0.25								
parameter	Figure1 Visualization of				(1) More pre-defined matrices can improve prediction accuracy.							
				Conclu	sion							
	Shareholding/Industry/Topicality Matrices				(2) When data is insufficient, data-driven matrix can be considered							

Hyper-parameter Analysis

Contributions

Compared with previous works, our contributions are as follows:

- **1** We take cross-effect among stocks into consideration, instead of historical observations of only single stock.
- 2 We novelly design industry/topicality graph to represent cross-effect among stocks.
- 3 We also explore a data-driven matrix to get rid of expert knowledge.
- 4 We utilize graph convolution network to capture cross-effect and GRU to capture temporal dependency in stock price.
- **5** Our Multi-GCGRU is flexible to consider more valuable pre-defined relationships.

Thanks for Listening