Joint Supervised and Self-Supervised Learning for 3D Real World Challenges

Antonio ALLIEGRO, Davide BOSCAINI, Tatiana TOMMASI

EMERGING 3D APPLICATION

ROBOTICS

AUGMENTED REALITY

AUTONOMOUS DRIVING

3D REAL-WORLD CHALLENGES

- Are we done with Point Cloud Obj. Classification?
- What about Real-World data?
- Deep Learning methods require huge quantity of annotated data
- Real-World datasets are small (ScanObject ~3K samples)
- Can we build robust models with limited supervised data?
- Can we transfer knowledge between Synthetic and Real-World domains?

SYNTHETIC VS REAL-WORLD

SYNTHETIC

- ModelNet40 [Wu et al. in CVPR 2015],
 ShapeNet [Chang et al., arXiv 2015]
- Point Clouds sampled from CAD Models
- Huge availability of annotated samples
- Clean Geometry, No Background

REAL-WORLD

- ScanObjectNN [Uy et al. in ICCV 2019]
- Background, Partiality, Object Clutter ..
- No sizable quantities of annotated data!

SYNTHETIC VS REAL-WORLD

DOMAIN SHIFT

- Synthetic and Real-World
 Point Cloud data do not
 share the same distribution
- Models trained on Synthetic (Source) poorly perform on Real-World (Target)

OUR REAL-WORLD RECIPE

- Multi-Task approach jointly combining Supervised and Self-Supervised learning
- Domain Adaptation and Generalization through self-supervision
- Robustness to limited annotated data (Few-Shot and Semi-Supervised settings)

OUR MULTI-TASK

 $\mathcal{L}_{Tot} = \mathcal{L}_m + \alpha \mathcal{L}_p$

3D PUZZLE

- For each point our network predicts its original membership voxel
- Object understanding is fundamental to solve this SS task:
 - (learning that..) Objects are made of parts
 - Spatial Relationship between Objects' parts

OBJ. CLASSIFICATION - DG / DA

DOMAIN GENERALIZATION (DG)

The whole set of annotated samples from Source (S) is available at training time. We test on the unseen Target collection (T)

• DOMAIN ADAPTATION (DA)

Aims to mitigate the domain shift between Source (S) and Target (T) domain by leveraging on unlabeled Target samples

	training time		test time	
	labeled source S	unlabeled target T	test S	target T
Domain Generalization				
Domain Adaptation				

OBJ. CLASSIFICATION - DG / DA

Classification - Domain Generalization and Adaptation							
Mathad	$ModelNet40 \rightarrow$			$PB_T50_RS_BG \rightarrow$			
method	OBJ_ONLY	OBJ_BG	PB_T50_RS	PB_T50_RS_BG	AVG	ModelNet40	Other DA
PointDAN [Qin et al.]	56.42	44.84	48.99	34.39	46.16	54.66	technique
Baseline	54.74	43.58	44.96	34.25	44.38	47.43	
PN Our DG	54.53	49.68	45.22	36.28	46.43	39.30	
Our DA	58.53	47.58	46.70	35.85	47.16	51.54	Our SOTA
Baseline	52.49	44.00	44.83	34.29	43.90	47.66	(Multi-Task
PN++ Our DG	57.47	52.42	52.84	38.65	50.34	52.88	
Our DA	60.4	53.89	54.66	39.63	52.14	56.07	J
3DmFV [Ben-Shabat et al.]	30.90	24.00	24.90	16.40	24.05	51.50	
PointCNN [Li et al.]	32.20	29.50	24.60	19.20	26.37	49.20	; Previous
SpiderCNN [Xu et al.]	44.20	42.10	30.90	22.20	34.85	46.60	, SOIA
DGCNN [Wang et al.]	49.30	46.70	36.80	27.20	40.00	54.70	; ARCHs

Synthetic → Real-World

Real-World → Synthetic

PART SEGMENTATION - FS / SS

We investigate the case of **limited annotated training data** in two settings:

• FEW SHOT (FS)

We reduce at different percentage scales the cardinality of Source Domain training data (S) and evaluate on the whole Source Test (T)

• SEMI-SUPERVISED (SS)

analogous to the Few Shot case but the percentage of samples which is not included in Source Train (S) can be still exploited as unlabeled data

	tra	test time	
	labeled source S	unlabeled source S	test S
ew Shot			
Semi-Supervised		Unlabeled	

PART SEGMENTATION - FS / SS

Part Segmentation with limited annotated data				
Method	1%	5%		
SO-Net [Li et al.]	64.0	69.0		
PointCapsNet [Zhao et al.]	67.0	70.0		
CCD [Hassani et al.]	68.2	77.7		
our baseline	64.52	75.75		
our multitask FS	64.49	75.07		
our multitask SS	71.95	77.42		

BASELINE

OUR MULTITASK

CONCLUSIONS

Our multi-task end-to-end learning framework combining supervised and self-supervised learning achieves

- SOTA performances for DA and DG:
 Synthetic → Real-World scenario (and vice-versa)
- Robustness to Limited Annotated Data

We see this work as a first exciting step towards a new family of methods better able to generalize and adapt to novel testing conditions for 3D point clouds.

Thank You!