Verifying the Causes of Adversarial Examples

Honglin Li,^{1,4} Yifei Fan,^{2,3} Frieder Ganz,³ Anthony Yezzi,² and Payam Barnaghi^{1,4}

¹Department of Brain Sciences, Imperial College London ²School of Electrical and Engineering, Georgia Institute of Technology ³Adobe Inc.

⁴Care Research and Technology Centre, The UK Dementia Research Institute

Introduction

- Studying the causes of adversarial examples is important but difficult
 - Requires thorough examination of the entire proximity of an input sample in a high-dimensional image space
- Thoughtful strategies are proposed to indirectly justify hypotheses and observe the geometry of input spaces [2, 3]

• This paper: verifying hypotheses on the causes of adversarial examples via carefully-designed controlled experiments

Popular explanations

- Low-probability "pockets" in the manifold [1]
 - Input spaces are not dense
- Model linearity [4]
 - $w^T(x + \Delta x)$ differs significantly from $w^T x$
- Test-error in additive noise [5]
- Non-robust features [6]
- Other geometric interpretations
 - Boundary-tilting perspective [7], geometry of \mathbb{R}^n with the L_0 metric [8], no category for "don't know" and data distribution is not concentrated [9]

Contributions

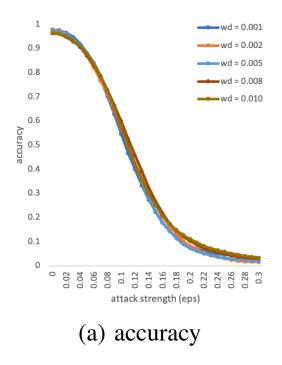
 Verify (or partially verify) several hypothesis on the causes of adversarial examples through carefully-designed controlled experiments.

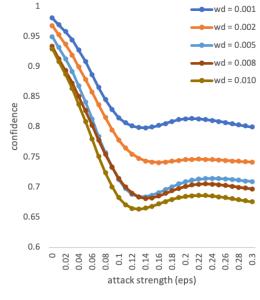
Review and collection of explanations on adversarial examples

(no SOTA attacks or defenses)

Hypothesis A: model linearity

- $w^T(x + \Delta x)$ can differ significantly from $w^T x$
- Reduce linearity with L_2 norm (i.e., weight decay)



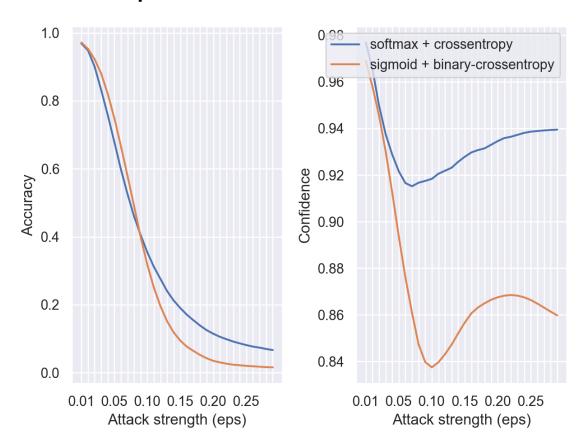


(b) confidence

- Not conclusive at the accuracy level
- Clear correlation at the confidence level

Hypothesis B: one-sum probability constraint

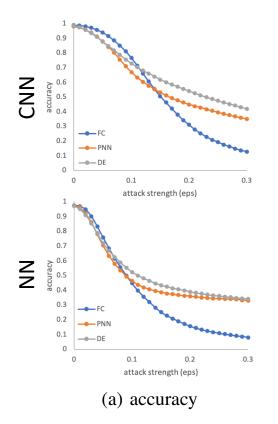
 High confidence results from the constraint that all probabilities must add up to 1

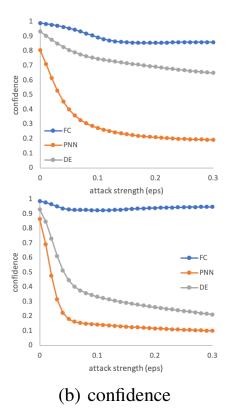


- Lift one-sum constraint
 - Sigmoid + binary-crossentropy
 - Lower confidence
- Two stages
 - Probability decrease at correct classes (boosted by one-sum constraint)
 - Probability increase at incorrect classes (hindered by one-sum constraint)

Hypothesis C: linearity + one-sum constraint

- Combination of the previous two causes leads to a stronger impact
- The proposed MLP-PNN (i.e., PNN) and DE can lift both constraints



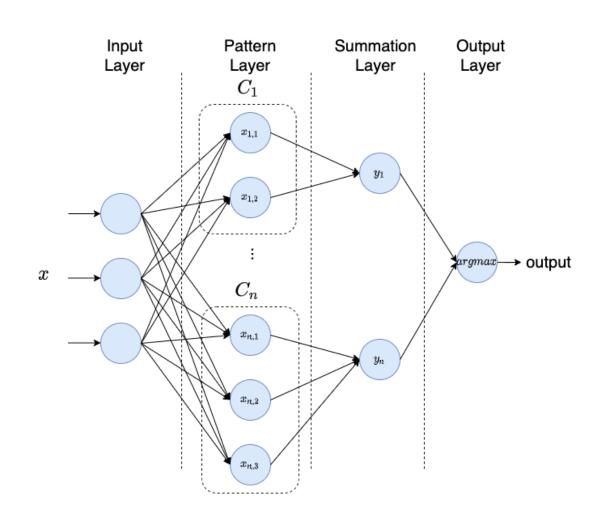


More robust under stronger attacks when the two constraints lifted by MLP-PNN and DE:

- Higher prediction accuracy
- Lower prediction confidence

Section IV elaborate the technical details of MLP-PNN and DE

Difference between PNN and DE



In the pattern layer:

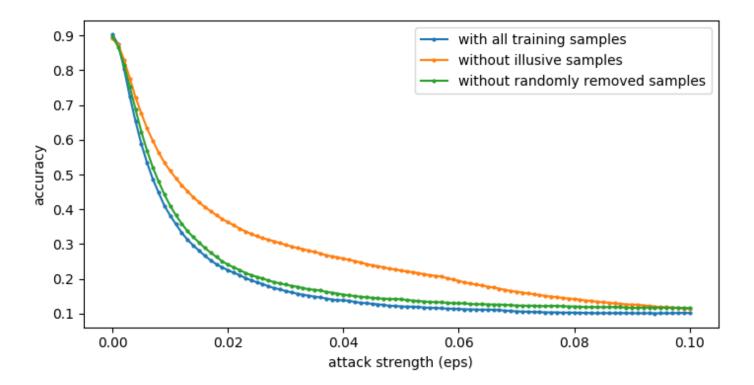
$$K(f(\mathbf{x}), \mathbf{x}_k) = \exp\left[-\frac{1}{2} \frac{||f(\mathbf{x}) - \mathbf{x}_k||}{2\sigma^2}\right]$$

 σ is :

- a pre-defined constant (.5) in PNN
- a trainable variable in DE

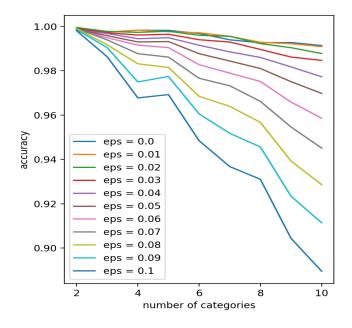
Hypothesis D: path-connected regions

- Uncertain "bridges" for connecting illusive (hard) samples in pathconnected regions
- Training without illusive (hard) samples enhance robustness

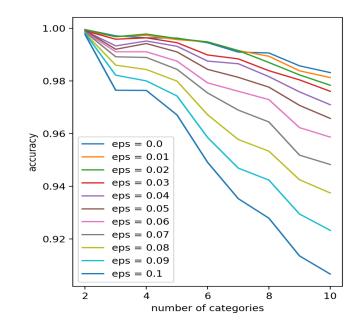


Hypothesis E: excessive number of categories

Fewer target categories leads to higher adversarial robustness



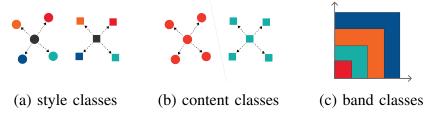
(a) additive mode: including all available training samples

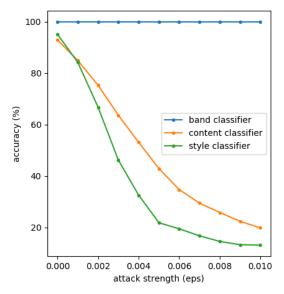


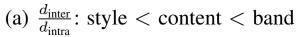
(b) constant mode: 10,000 training samples (balanced)

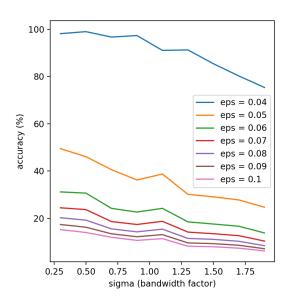
Hypothesis F: geometry of categories

- Adversarial robustness depends on geometry of the input space:
 - entropy of the distribution of categories
 - can be measured by $d_{\rm inter}/d_{\rm intra}$









(b) increasing band overlap

Summary

- Verified hypothesis on causes of adversarial examples
 - Geometric factors: direct causes
 - Statistical factors: magnifier for high confidence

- Future work
 - More rigorous investigation on the root causes of adversarial examples
 - Design on more robust models

