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Activation normalization —
ubiquitous in neural networks

Batch normalization, group
normalization, response
normalization, etc.
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We assume that activations follow
Gaussian distribution
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Activation normalization —
ubiquitous in neural networks

Batch normalization, group
normalization, response

normalization, etc.

We assume that activations follow
Gaussian distribution

Is it true? Is it true for all layers?
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Pretrained version of VGG 16 on test set of ImageNet

Activation distributions WYGG16
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Pretrained version of ResNext-101 on test set of ImageNet

__Activation distributions on ResNext-101

Activations
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% Gaussian distribution

Activations follow Gaussian distribtuion

With some outliers
Probability Density Function of Activations

In case of Gaussian f
distribution samples :

outside 70 has a
1:390,682,215,445
probability of
appearance
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Activations follow Gaussian distribtuion

With some outliers
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Activations follow Gaussian

distribtuion
With some outliers . Probability Density Function of Activations
What are 51 samples

these outliers?
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Activations follow Gaussian

distribtuion
With some outliers

What are
these outliers?

51 out of
50000 samples
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% Specificity vs generality

By

The samples are specific (kernel
453)

Not all layers are Gaussian- logit
layer

We want specific neurons
(saliency maps, deepdream)
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% Specificity vs generality (kernel 34)




% Specificity channel 206




Filtered Batch Normalization:

- we normalize the samples accord
to batch normalization

Frobabality Density

Frobability Density Function of Activations
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Frobability Density Function of Activations
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- we normalize the samples |
according to batch normalization |
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Filtered Batch Normalization:

Frobabality Density

-Select samples around the mean ({
to distance) t is a parameter of the
algorithm (t=4)
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Frobability Density Function of Activations

Filtered Batch Normalization:

- we normalize the samples
according to batch normalization

-Select samples around the mean
(in to distance) t is a parameter of
the algorithm (t=4)

Frobabality Density
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-Execute batch normalization
using the selected samples only



ﬁ Filtered Batch Normalization
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% Filtered Batch Normalization

ImageNet results VGG-16

3% increase in test accuracy compared

to regular batch normalization

MS-COCO results Mask R-CNN with
ResNext-101 backbone

0.6 mAP increase in segmentation
1.1 mAP increase in detection
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SEG(50K) 23.87 44.56 2541 45.42
SEG(100K) | 26.86 45.55 27.34 52.40
SEGLIA0K) 28.606 51.80 34.15 53543
SEGI2TOK) 36.47 58.07 37.06 58.92
Box(50K) 23.63 41,90 27.86 47.84
Boxi 100K 28,16 48,43 28.74 49,65
Box(150K) | 30.53 50.79 314,24 53.13
BOX{270K) 40,01 Bl.32 41.12 G6l.71




ﬁ Filtered Batch Normalization — Smoother loss landscape

Loss Landscape
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| Group normalization

L

ImageNet Top-1 classification error
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e Activaitons does not always follow Gaussian distribution, there are outliers for
specificity
e These samples can disturb normalization

e We filter out out-of-distribution samples before normalization during training,
no alteration in inference

e Results faster convergence and higher test accuracy

In case of questions please come to our poster or write us:
horvath.andras@itk.ppke.hu



