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Summary

What are NMRDPs?1

2 How do we solve NMRDPs?

3 Does it work in practice?
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What are NMRDPs?
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Planning in NMRDPS

≃

Planning over trajectory specific 

tasks

A tuple {O,A,R,P,ɣ} where:

O: Observation space 

A: Action space
R: Reward function

P: Transition probabilities
Ɣ: discount factor

BUT

R maps trajectories Γ(O) into rewards
(rather than observations as in MDPs)



NMRDP vs Multi-task MDP
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Planning in NMRDPS

≃

Planning over trajectory specific 

tasks

In Multi-task MDPs:
An agent is optimal with respect to each 

task

In NMRDPs:
An agent is optimal with respect to a 

sequence of tasks

≠
Optimally collecting wood 

THEN stones
Optimally collecting wood 

OR stones
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Nos domaines 
d’expertise

Solving NMRDPs
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Standard approach?
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Solving NMRDPS

≃

Constructing an equivalent MDP

+

Solving the new MDP

Solving NMRDPs in the general case require 
specific domain knowledge to build the 
equivalent MDP

For example, 'key observations' that can 
lead to a change in the reward function.

The optimal construction of the equivalent 
MDPs relies heavily on combinatorial 

schemes.



A Subset of NMRDPs
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Solving NMRDPS

≃

Constructing an equivalent MDP

+

Solving the new MDP

We consider NMRDPs where:

In particular this coincides with:



A Subset of NMRDPs

9

Solving NMRDPS

≃

Constructing an equivalent MDP

+

Solving the new MDP

In this specific case, the equivalent MDP 
can be defined as follows:

Where

And

All these quantities are tractable except the 
trajectory representation function T and 
the latent space H



Relaxing the equivalent MDP
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Solving NMRDPS

≃

Constructing an equivalent MDP

+

Solving the new MDP

We propose to construct the equivalent MDP 
using a feature space instead of the latent space H 

and a trajectory embedding 
function instead of T

Let where:

The equivalence holds if and only if:

(up to a permutation)



Relaxing the equivalent MDP
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Solving NMRDPS

≃

Constructing an equivalent MDP

+

Solving the new MDP

We proved that given a feature function that 
satisfies for all trajectory pairs:

Then the K-means classifier is ensured to verify:

Thus, expanding the NMRDP boils down to 
approximatingsuch trajectory feature function.



Goal?
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Learn the trajectory feature function using 
a semi supervised signal and a contrastive 
loss.

semi supervised signal?

=
Batches of similar and different 

trajectories

This can be seen as a relaxation of the 
domain knowledge requirement in the 
general case.

Solving NMRDPS

≃

Learning the feature function

+

Solving the new MDP



Contrastive loss
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We can formally satisfy this constraint

Using the contrastive loss

Thus, expanding the NMRDP boils down to 
minimizing such loss function using trajectory PK 
batches (K sample from P trajectory class)

Solving NMRDPS

≃

Learning the feature function

+

Solving the new MDP
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Experimental
results
3



Does contrastive learning 

work for trajectories?
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We consider tourist GPS tracks in an open-air museum. 

We construct the PK batches using the places where they stopped.



Does contrastive learning 

work for trajectories?
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We sample trajectories with similar representation to check that they are indeed separated



Can contrastive learning 
expand efficiently NMRDPs?

• We consider an Object-world 
environment where the task is to 
collect a succession of objects
• We represent the trajectories' 
features color-codded according to the 
associated latent tasks
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Is it easy to learn the optimal 
policy of the NMRDP?

• We consider an Object-world 
environment where the task is to 
collect a succession of objects
• We compare DQN performance with 
or without the latent representation
• We also use as a baseline the DRQN 
architecture used to learn policies in 
Attari games
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Thanks for 
watching ! 


