





What are NMRDPs?

How do we solve NMRDPs?

Does it work in practice?





# NMRDPs: a Non Markovian Reward Decision Process framework

#### What are NMRDPs?

A tuple  $\{O,A,R,P,\gamma\}$  where:

O: Observation space

A: Action space

R: Reward function

P: Transition probabilities

Y: discount factor

**BUT** 

R maps **trajectories**  $\Gamma(O)$  into rewards (rather than observations as in MDPs)



#### NMRDP vs Multi-task MDP

In Multi-task MDPs:

An agent is optimal with respect to each task

In NMRDPs:

An agent is optimal with respect to a **sequence** of tasks

Optimally collecting wood
OR stones

Optimally collecting wood

THEN stones



2
Solving NMRDPs



#### Standard approach?

Solving NMRDPs in the general case require specific domain knowledge to build the equivalent MDP

For example, 'key observations' that can lead to a change in the reward function.

The optimal construction of the equivalent MDPs relies heavily on combinatorial schemes.



#### A Subset of NMRDPs

We consider NMRDPs where:

$$\mathcal{R}((o_t)_{t=0}^{t=T}) = \mathcal{R}(o_T, \mathcal{T}((o_t)_{t=0}^{t=T})) = \mathcal{R}(o_T, h_T) \quad \forall \ T \in \mathbb{N}.$$

$$\mathcal{T}((o_t)_{t=0}^{t=T}) = \mathcal{T}((o_{T-\tau})_{\tau=0}^{\tau=\tau_O}, (h_{T-\tau})_{\tau=1}^{\tau=\tau_T}) \quad \forall \ T \in \mathbb{N}.$$

In particular this coincides with:

$$\mathcal{T}((o_t)_{t=0}^{t=T}) = \mathcal{T}(o_T, h_{T-1}) = h_T \quad \forall \ T \in \mathbb{N}.$$



#### A Subset of NMRDPs

In this specific case, the equivalent MDP can be defined as follows:

$$\mathcal{M}^* = \{\mathcal{S}^*, \mathcal{A}^*, \mathcal{P}^*, \mathcal{R}^*, \gamma\}$$

Where

$$S^* = \mathcal{H} \times \mathcal{O}$$

And

$$\begin{cases} \mathcal{A}^*(o_t, h_t) = \mathcal{A}(o_t) \\ \mathcal{R}^*(o_t, h_t) = \mathcal{R}(o_{0:t}) \\ \mathcal{P}^*((o_{t+1}, h_{t+1}) | (o_t, h_t), a_t) = \\ \mathcal{P}(o_{t+1} | o_t, a_t) \times \mathbb{1}_{h_{t+1} = \mathcal{T}(h_t, o_{t+1})} \end{cases}$$

All these quantities are tractable except the trajectory representation function T and the latent space H



#### Relaxing the equivalent MDP

We propose to construct the equivalent MDP using a feature space instead of the latent space H and a trajectory embedding

$$\phi:\Gamma(\mathcal{O}) o \mathbb{R}^d$$
 instead of T

Let 
$$\hat{\mathcal{M}} = \{\hat{\mathcal{S}}, \hat{\mathcal{A}}, \hat{\mathcal{P}}, \hat{\mathcal{R}}, \gamma\}_{\text{ere:}}$$

$$\hat{\mathcal{S}} = \mathbb{R}^d \times \mathcal{O} \supseteq \phi(\Gamma(\mathcal{O})) \times \mathcal{O}.$$

$$\begin{cases} \hat{\mathcal{R}}(o_t, \phi_t) = \mathcal{R}^*(o_t, \mathcal{C}(\phi_t)) = \mathcal{R}^*(o_t, h_t) \\ \hat{\mathcal{P}}((o_{t+1}, \phi_{t+1}) | (o_t, \phi_t), a_t) = \\ \mathcal{P}^*((o_{t+1}, \mathcal{C}(\phi_{t+1})) | (o_t, \mathcal{C}(\phi_t)), a_t) \end{cases}$$

The equivalence holds if and only if:

$$\mathcal{C} \circ \phi = \mathcal{T}$$

(up to a permutation)



#### Relaxing the equivalent MDP

We proved that given a feature function that satisfies for all trajectory pairs:

$$\inf_{\substack{\gamma_1, \gamma_2, \mathcal{T}(\gamma_1) \neq \mathcal{T}(\gamma_2) \\ \gamma_1, \gamma_2, \mathcal{T}(\gamma_1) = \mathcal{T}(\gamma_2)}} |\phi(\gamma_1) - \phi(\gamma_2)| > \sup_{\substack{\gamma_1, \gamma_2, \mathcal{T}(\gamma_1) = \mathcal{T}(\gamma_2)}} |\phi(\gamma_1) - \phi(\gamma_2)|.$$

Then the K-means classifier is ensured to verify:

$$\mathcal{C} \circ \phi = \mathcal{T}$$

Thus, expanding the NMRDP boils down to approximating such trajectory feature function.



#### Goal?

Learn the trajectory feature function using a semi supervised signal and a contrastive loss.

semi supervised signal?

=

Batches of similar and different trajectories

This can be seen as a relaxation of the domain knowledge requirement in the general case.



#### Contrastive loss

We can formally satisfy this constraint

$$\inf_{\substack{\gamma_1, \gamma_2, \mathcal{T}(\gamma_1) \neq \mathcal{T}(\gamma_2) \\ \gamma_1, \gamma_2, \mathcal{T}(\gamma_1) = \mathcal{T}(\gamma_2)}} |\phi(\gamma_1) - \phi(\gamma_2)| > \sup_{\substack{\gamma_1, \gamma_2, \mathcal{T}(\gamma_1) = \mathcal{T}(\gamma_2)}} |\phi(\gamma_1) - \phi(\gamma_2)|.$$

Using the contrastive loss

$$\mathcal{L}_{BH}(\theta, \gamma) = \sum_{j=1}^{P} \sum_{i=1}^{K} \log \operatorname{1p} \left( m + \max_{p \leq K} ||\phi(\theta)_{i}^{j} - \phi(\theta)_{p}^{j}|| - \min_{p \leq K, c \leq P, c \neq j} ||\phi(\theta)_{i}^{j} - \phi(\theta)_{p}^{c}|| \right)$$

Thus, expanding the NMRDP boils down to minimizing such loss function using trajectory PK batches (K sample from P trajectory class)



3 Experimental results





## Does contrastive learning work for trajectories?

We consider tourist GPS tracks in an open-air museum. We construct the PK batches using the places where they stopped.







# Does contrastive learning work for trajectories?

We sample trajectories with similar representation to check that they are indeed separated





## Can contrastive learning expand efficiently NMRDPs?

- We consider an Object-world environment where the task is to collect a succession of objects
- We represent the trajectories' features color-codded according to the associated latent tasks





### Is it easy to learn the optimal policy of the NMRDP?

- We consider an Object-world environment where the task is to collect a succession of objects
- We compare DQN performance with or without the latent representation
- We also use as a baseline the DRQN architecture used to learn policies in Attari games







Thanks for watching!