Large-Scale Historical Watermark Recognition: dataset and a new consistency-based approach

Xi Shen¹ Ilaria Pastrolin² Oumayma Bounou¹ Spyros Gidaris³ Marc Smith² Olivier Poncet² Mathieu Aubry¹

1. École des Ponts ParisTech 2. École Nationale des Chartes 3. Valeo AI
Watermark?

Looking through old paper
Watermark?

Mold for paper fabrication

Looking through old paper
Watermark?

Looking through old paper

Mold for paper fabrication

Watermark Catalog
Contributions

• A large public dataset

• Consistency based local matching score

• Weakly supervised feature fine-tuning
Contributions

• A large public dataset

• Consistency based local matching score

• Weakly supervised feature fine-tuning
Classification dataset

100 classes: 50 images / class for training and 10 images / class for validation.
One-shot dataset

100 other classes with 3 images per class: 1 reference without any text + 2 cluttered query photographs
Cross-domain dataset

- **140** training classes with **1** drawing as reference + **1-7** query photographs.
- **100** testing classes with **1** drawing as reference + **2** query photographs.
Our contribution

• A large public dataset

• Consistency based local matching score

• Weakly supervised feature fine-tuning
Global feature matching

Cosine similarity between global pooled features

ResNet-18 trained on classification dataset
Performances

<table>
<thead>
<tr>
<th>Dataset, Ref.</th>
<th>One-shot Real</th>
<th>Cross-domain Drawing</th>
<th>Cross-domain Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global (Average Pool)</td>
<td>69%</td>
<td>4%</td>
<td>12%</td>
</tr>
</tbody>
</table>
Local feature matching (Conv4)
Performances

<table>
<thead>
<tr>
<th>Dataset, Ref.</th>
<th>One-shot Real</th>
<th>Cross-domain Drawing</th>
<th>Cross-domain Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global (Average Pool)</td>
<td>69%</td>
<td>4 %</td>
<td>12%</td>
</tr>
<tr>
<td>Local (conv4)</td>
<td>75%</td>
<td>56 %</td>
<td>65 %</td>
</tr>
</tbody>
</table>
Local feature matching (Conv4)
Local matching score

\[S(I_1, I_2) = \sum_{i \in I} \left(e^{-\frac{||x_1^i - x_2^i||^2}{2\sigma^2}} \right) \left(\cos(f_1^i, f_2^i) \right) \]

Spatial Consistency

Feature Similarity
Local matching score

See paper for comparisons to few-shot methods

<table>
<thead>
<tr>
<th>Dataset, Ref.</th>
<th>One-shot Real</th>
<th>Cross-domain Drawing</th>
<th>Cross-domain Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
<td>![Real Image]</td>
<td>![Drawing Image]</td>
<td>![Synthetic Image]</td>
</tr>
<tr>
<td>Global (Average Pool)</td>
<td>69%</td>
<td>4%</td>
<td>12%</td>
</tr>
<tr>
<td>Local (conv4)</td>
<td>75%</td>
<td>56%</td>
<td>65%</td>
</tr>
<tr>
<td>Local matching (Ours)</td>
<td>90%</td>
<td>66%</td>
<td>72%</td>
</tr>
</tbody>
</table>
Contributions

• A large public dataset

• Consistency based local matching score

• Weakly supervised feature fine-tuning
Local matching-based domain adaptation

\[\mathcal{L}(\theta) = \frac{1}{N} \sum_{n_1, n_2 \in \mathcal{N}} \max(1 - \lambda, \cos(f_\theta(n_1), f_\theta(n_2))) - \frac{1}{\mathcal{P}} \sum_{p_1, p_2 \in \mathcal{P}} \min(\lambda, \cos(f_\theta(p_1), f_\theta(p_2))) \]

Negative Pairs:
- Different classes

Positive Pairs:
- Same class
- Similar location
Fine-tuning results

<table>
<thead>
<tr>
<th>Dataset, Ref.</th>
<th>Cross-domain Drawing</th>
<th>Cross-domain Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref.</td>
<td>![Ref Image]</td>
<td>![Ref Image]</td>
</tr>
<tr>
<td>Global (Average Pool)</td>
<td>4 %</td>
<td>12%</td>
</tr>
<tr>
<td>Local (conv4)</td>
<td>56 %</td>
<td>65 %</td>
</tr>
<tr>
<td>Local matching (Ours)</td>
<td>66%</td>
<td>72%</td>
</tr>
<tr>
<td>Fine-tuning + Local matching (Ours)</td>
<td>75 %</td>
<td>83 %</td>
</tr>
</tbody>
</table>
Qualitative results

Query

Local (conv 4)

1st Match 2nd Match 3rd Match 4th Match 5th Match

Local Matching

Local Matching + F.T.
Summary

• Dataset and a consistency based approach for historical watermark recognition

• Web application: https://filigranes.inria.fr/

A Web Application for Watermark Recognition
2020 Journal of Data Mining & Digital Humanities
Oumayma Bounou, Tom Monnier, Ilaria Pastrolin, Xi Shen, Christine Benevent, Marie-Françoise Limon-Bonnet, François Bougard, Mathieu Aubry, Marc Smith, Olivier Poncet, Pierre-Guillaume Raverdy