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• Challenges of scene text recognition

• How to handle wide variances in styles, orientations, and image qualities

• How to sufficiently explore 2D spatial information

• Our idea: Multi-Element Attention (MEA)

• Incorporating graph structure modeling into self-attention mechanism [1]

• Assigning various adjacency matrices to the graph

Motivation
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Fig. 1. (a) Features extracted from an input image is modeled as an undirected graph; (b)-(d) Schematic diagram of the attention

weights computation of three different MEAs.



• Self-attention mechanism

• MEA is a generalized form of the self-attention mechanism

• Three different implementations of 𝐴𝑋𝑊𝑄 and 𝐵𝑋𝑊𝐾
• MEA-Local: 1 × 1 convolutions with local receptive field
• MEA-Neighbor: 𝑚 × 𝑛 convolutions with neighbor receptive field
• MEA-Global: graph convolutions with global receptive field

Multi-Element Attention
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Multi-Element Attention Network (MEAN)
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• MEAN consists of a CNN, an encoder, and a decoder

• CNN: a modified EfficientNet-B3[2] with U-shaped structure

• Encoder: three types of MEA mechanism

• Decoder: Transformer decoder

Fig. 2. System framework of MEAN that consists of: a CNN, an encoder equipped with the MEA mechanism, and a decoder. 

Orientational positional encoding is added into features maps output by the CNN.



Multi-Element Attention Network (MEAN)

5

• Orientational positional encoding: handling multi-oriented text images

Fig. 2. System framework of MEAN that consists of: a CNN, an encoder equipped with the MEA mechanism, and a decoder. 

Orientational positional encoding is added into features maps output by the CNN.
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Experiments
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• English scene text recognition

• Comparing with previous state-of-the-art methods

• Training set: MJSynth, SynthText

• Test set: IIIT5k, SVT, IC03, IC13, IC15, SVTP, CUTE

• Chinese scene text recognition

• Exploring the performance of recognizing multi-oriented texts

• Training set: self-synthesized samples, a subset of RCTW

• Test set: a subset of RCTW



English Scene Text Recognition
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Model Training data
Regular text datasets Irregular text datasets

IIIT5k SVT IC03 IC13 IC15 SVTP CUTE

FAN (Cheng et al.) [3] MJ+ST+Char 87.4 85.9 94.2 93.3 70.6 - -

Mask TextSpotter (Liao et al.) [4] MJ+ST+Char 95.3 91.8 95.0 95.3 78.2 83.6 88.5

SAR (Li et al.) [5] MJ+ST+Add 95.0 91.2 - 94.0 78.8 86.4 89.6

AON (Cheng et al.) [6] MJ+ST 87.0 82.8 91.5 - 68.2 73.0 76.8

EP (Bai et al.) [7] MJ+ST 88.3 87.5 94.6 94.4 73.9 - -

ACE (Xie et al.) [8] MJ+ST 82.3 82.6 92.1 89.7 68.9 70.1 82.6

MORAN (Luo et al.) [9] MJ+ST 91.2 88.3 95.0 92.4 68.8 76.1 77.4

DAN (Wang et al.) [10] MJ+ST 94.3 89.2 95.0 93.9 74.5 80.0 84.4

ASTER (Shi et al.) [11] MJ+ST 93.4 89.5 94.5 91.8 76.1 78.5 79.5

SRN (Yu et al.) [12] MJ+ST 94.8 91.5 - 95.5 82.7 85.1 87.8

MEAN MJ+ST 95.9 94.3 95.9 95.1 79.7 86.8 87.2

Table 1. Word recognition accuracy (%) across methods and datasets. MJ, ST, Char, and Add denote MJSynth, SynthText, 

character bounding boxes, and additional training data, respectively. The best results are marked in bold.



Multi-Oriented Chinese Scene Text Recognition
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Test set
Baseline MEAN

H V H & V H V H & V

Horizontal 74.2 - 52.2 77.4 - 81.6

Vertical - 74.6 36.0 - 78.6 86.0

• Baseline is a CNN-Transformer network with 1D attention mechanism

• Trained on only horizontal or vertical text images
• MEAN achieves a slightly higher accuracy than baseline

• Trained on both horizontal and vertical text images
• Performance of baseline is significantly degraded

• MEAN achieves even higher performance

Table 2. Word accuracy (%) of different models for multi-oriented Chinese scene text recognition. 

“H”, “V”, and “H & V” denote the model is trained on only horizontal text images, only vertical 

text images, and both horizontal and vertical text images.



Effectiveness of MEA
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Model
#params English Chinese

English Chinese SVT SVTP Horizontal Vertical

MEAN-Local 23.4M 29.9M 93.5 86.5 80.2 83.2

MEAN-Neighbor 28.1M 34.6M 93.8 86.8 81.2 83.8

MEAN-Global 23.7M 30.1M 93.5 85.9 80.8 84.8

MEAN 31.0M 37.5M 94.3 86.8 81.6 86.0

Table 3. Word accuracy (%) of models with different variants of MEAs.

• MEAN-Neighbor and MEAN-Global outperform MEAN-Local

• MEAN with all three types of MEAs achieves the highest performance



Visualization of attention weights
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• MEA-Neighbor and MEAN-Global focus more on foreground areas

• Three types of MEAs are complementary

Fig. 3. Visualization of attention weights 𝛼𝑖𝑗. (a) Input image, and the red point denotes position i. 

(b)-(d) The attention weights of MEA-Local, MEA-Neighbor, and MEA-Global, respectively.



Recognition Examples
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• Support for curved, skewed, and multi-oriented texts
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