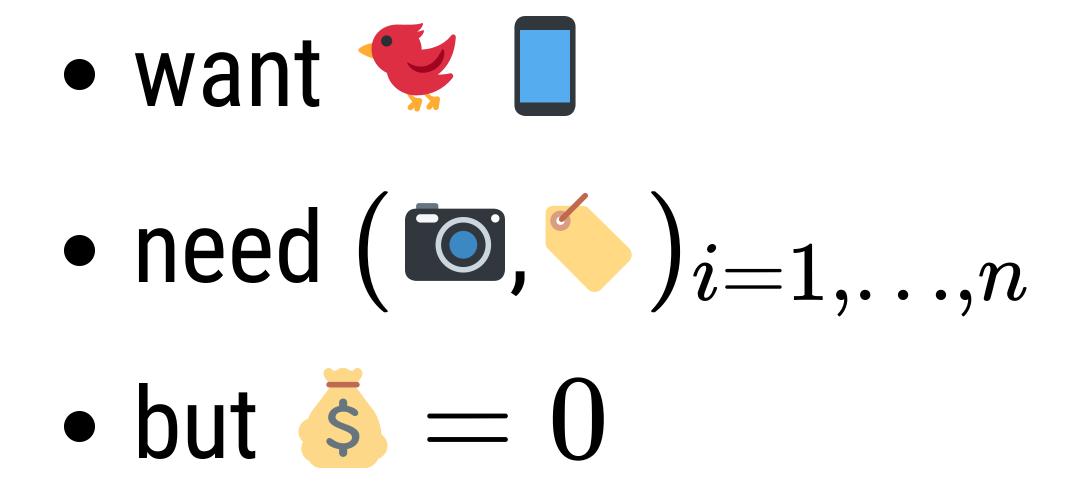
MAKING EVERY LABEL COUNT: HANDLING SEMANTIC IMPRECISION BY INTEGRATING DOMAIN KNOWLEDGE

Clemens-Alexander Brust and Björn Barz and Joachim Denzler January 15th, 2021 ICPR 2021 Paper 1903

FRIEDRICH-SCHILLER UNIVERSITÄT JENA



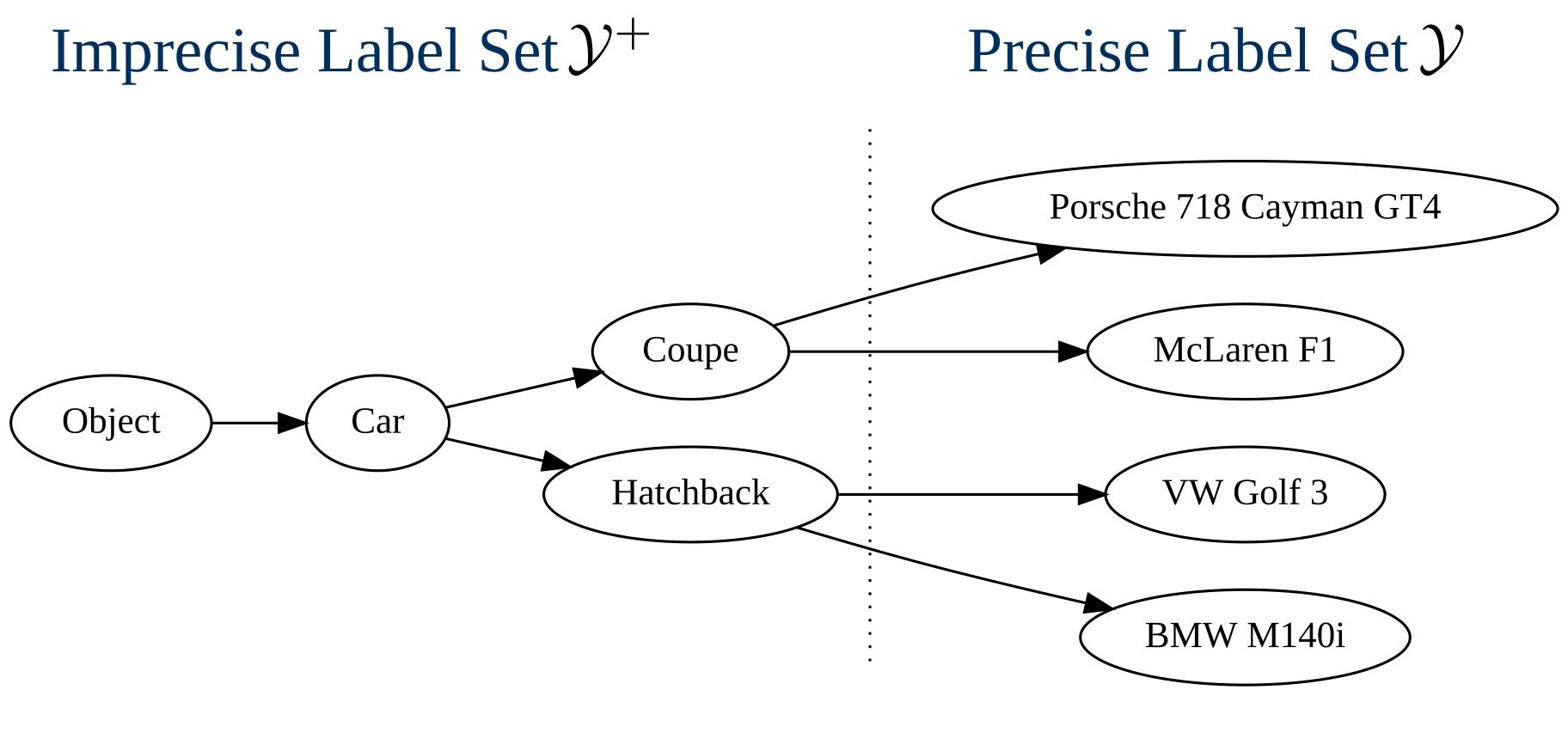
2

LARGE AMOUNTS OF NOT-SO-WELL-LABELED DATA

Cheap data, but noisy in certain areas:

- Accuracy: a Yellow-billed Magpie is labeled as Black-billed Magpie, Barn Owl, or Ferrari 488 Pista.
- **Precision**: a *Snow Bunting (Nonbreeding)* is labeled as *Snow* Bunting, Perching Bird, Bird or Object.

Literature focuses on accuracy, rarely even considers semantics. Today: focus on lack of (semantic) precision.



Paper 1903 | Clemens-A. Brust: Making Every Label Count

Task:

learn from $\mathcal{Y} \cup \mathcal{Y}^+$ always predict \mathcal{Y}

Paper 1903 | Clemens-A. Brust: Making Every Label Count

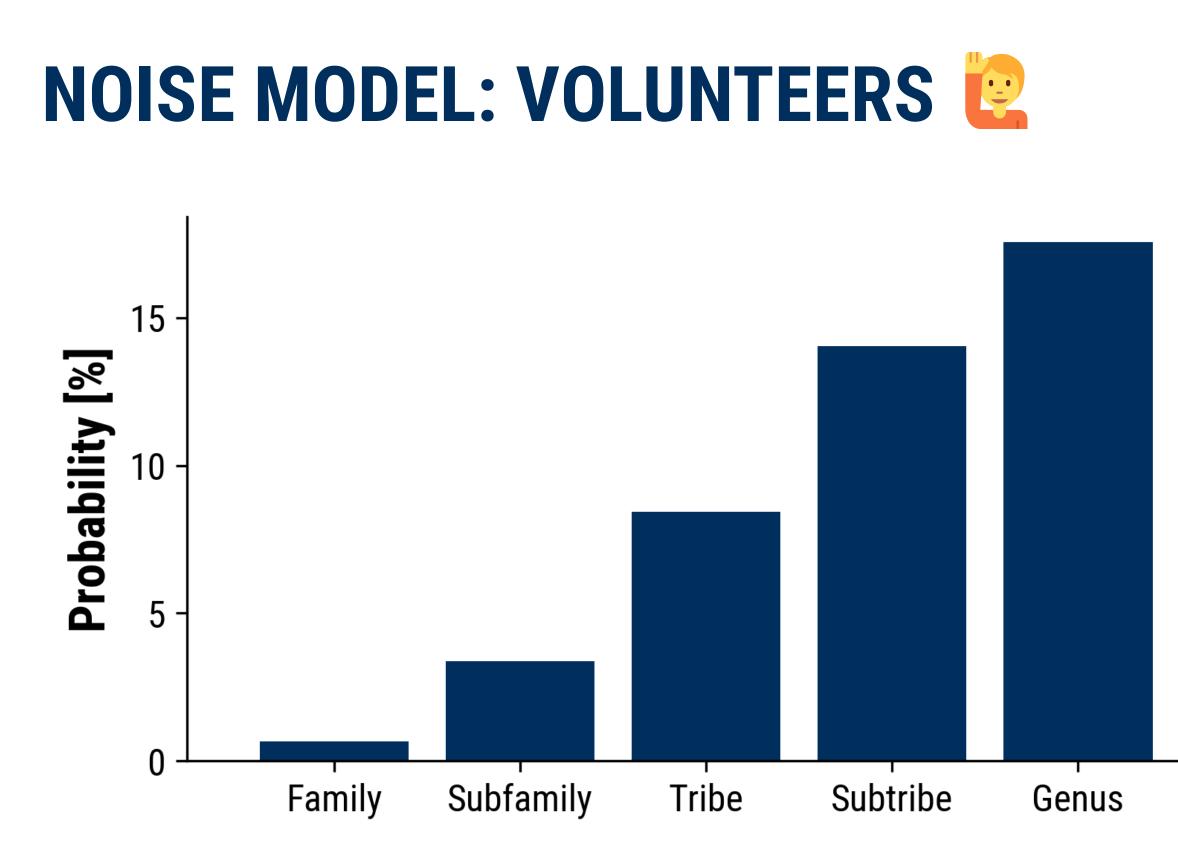
5

CHILLAX: MODIFIED HIERARCHICAL CLASSIFIER

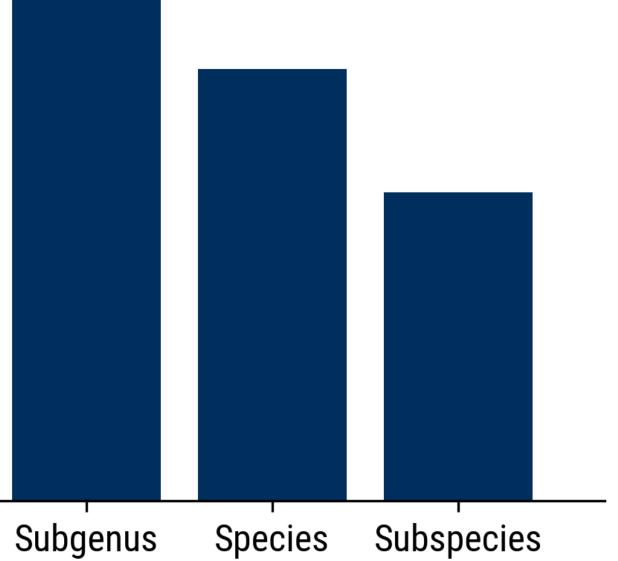
Typical classifier: model P(Y|X), *e.g.,* using a large neural network, with $\Omega_Y = \mathcal{Y}$.

Our hierarchical classifier [Brust ACPR'19]:

- Model $P(Y| ext{parents}(Y)=1,X)$ using a neural network, with $\Omega_Y=\mathcal{Y}\cup\mathcal{Y}^+$ Learn conditionally using a loss mask. "Learn only what we know."
- To calculate P(Y|X), evaluate $P(Y| ext{parents}(Y),X)$ recursively up to root.
- Compute argmax over all "allowed" Y, depending on task: only leaf nodes (annotation extrapolation), or
 - all nodes, *e.g.*, to model unconfident predictions.



Poisson distribution with $\lambda = 5$.



EXPERIMENTAL RESULTS: VOLUNTEERS

Noise model: Poisson distribution. *No Inaccuracy*.

Method \ Setting	$\lambda = 1$	$\lambda=2$	$\lambda=3$	$\lambda=4$	No Noise
Baseline: leaves only	26.5 ± 0.8	61.9 ± 0.5	74.9 ± 0.3	79.1 ± 0.2	82.8 ± 0.2
Baseline: random leaf	11.1 ± 0.4	36.8 ± 0.4	59.0 ± 0.5	70.6 ± 0.3	82.8 ± 0.2
Ours	$\textbf{42.9}\pm0.4$	$\textbf{70.1}\pm0.2$	77.7 ± 0.3	80.1 ± 0.1	81.4 ± 0.2
Precise samples	4.8	22.7	45.9	65.9	100.0

Table shows accuracy on NABirds validation set (%). 6 runs each.

EXPERIMENTAL RESULTS: VOLUNTEERS

Noise model: Poisson distribution. *Inaccuracy: 10%*.

Method \ Setting	$\lambda = 1$	$\lambda=2$	$\lambda=3$	$\lambda=4$	Only Inacc.
Baseline: leaves only	22.1 ± 0.4	54.4 ± 1.2	67.9 ± 0.1	$\textbf{73.1}\pm0.6$	77.3 ± 0.1
Baseline: random leaf	10.0 ± 0.3	33.1 ± 0.6	53.1 ± 0.7	65.4 ± 0.2	77.3 ± 0.1
CHILLAX (Ours)	34.6 ± 1.2	$\textbf{60.5}\pm0.3$	69.8 ± 0.3	72.8 ± 0.2	75.3 ± 0.4
Precise samples	4.8	22.7	45.9	65.9	100.0

Table shows accuracy on NABirds validation set (%). 6 runs each.

COMPARISON TO DENG ET AL. ECCV 2014:

- Deng et al. 2014: "Large-Scale Object Classification Using Label Relation Graphs".
- CRF that describes the relationships between concepts:
 - Subsumption and
 - Exclusion.
- Have to perform exact inference for each prediction \rightarrow very expensive.
- Experiment on ILSVRC2012 classification dataset. Relabel a fraction of samples to their immediate parents.

COMPARISON TO DENG ET AL. ECCV 2014 (2):

Noise model: Relabeling to immediate parents, cf. [Deng ECCV'14]. *No Inaccuracy*.

Method \ Setting	p=0.99	p=0.95	p=0.9	p=0.5	No Noise
HEX	41.5 (68.5)	52.4 (77.2)	55.3 (79.4)	58.2 (80.8)	62.6 (84.3)
CHILLAX (Ours)	38.1 (68.6)	52.1 (78.1)	55.5 (80.2)	62.1 (83.6)	62.5 (83.5)

Table shows top-1 (top-5) accuracy on ILSVRC2012 validation set (%).

CONCLUSION

Our noise models:

- Capture various sources of labels: volunteers, web crawling...
- Are validated by real-world observations (see paper)

Our method is:

- Somewhat robust to inaccuracy on top of imprecision.
- Competitive w.r.t. [Deng ECCV'14], but not always better.

\rightarrow Don't throw away imprecise labels!

