GraphBGS: Background Subtraction via Recovery of Graph Signals

Jhony H. Giraldo and Thierry Bouwmans

International Conference on Pattern Recognition

10-15 January 2021 - Milan, Italy

Motivation and Problem

Motivation

Capturing geometrical information with graphs

- Deep learning approaches require large amounts of data to avoid overfitting.
- Graphs offer tools to exploit the geometrical structure of data.
- Most deep learning techniques in background subtraction do not evaluate their performance on unseen videos.

Background subtraction, moving object detection

• Background subtraction of unseen videos using semi-supervised learning techniques inspired from graph signal processing.

Algorithm

Overview

- Our proposed algorithm consists of several components including:
 - Instance segmentation using Cascade Mask R-CNN [Cai and Vasconcelos (2019)]
 - Background initialization using a temporal median filter [Piccardi (2004)]
 - Feature extraction with motion [Lucas et al. (1981)], texture [Ojala et al. (2002)], and intensity features
 - Semi-supervised learning inspired from Sobolev norm minimization.

Algorithm

Instances and Graph

Cascade Mask R-CNN, nodes representation, sampling.

- Instance masks are mapped as nodes of a graph G.
- The representation of the nodes is given by:
 - Motion features
 - Texture features
 - Intensity features
 - Background features.
- The graph is constructed with a k-nearest neighboors with k=30.
- The graph signal associated to the problem of background subtraction is sampled for a evaluation with <u>unseen videos</u>.

Experimental Framework

Results I

Categories	Original	Ground Truth	SuBSENSE	PAWCS	IUTIS-5	BSUV-Net	GraphBGS (ours)
Bad Weather Snow Fall in002776	É		3	3	3		
Baseline PETS2006 in000986	W	<u>к</u>	b .	₿. ₿	8- 10-	II F	N
Camera Jitter Badminton in000980		¶. ₽		1.			¶. ↓

Some visual results on CDNet2014.

Challenge	FTSG	SuBSENSE	PAWCS	WisenetMD	IUTIS-5	SemanticBGS	FgSegNet v2	BSUV-Net	GraphBGS
Bad Weather	0.8228	0.8619	0.8152	0.8616	0.8248	0.8260	0.7952	0.8713	0.9085
Baseline	0.9330	0.9503	0.9397	0.9487	0.9567	0.9604	0.6926	0.9693	0.9535
Camera Jitter	0.7513	0.8152	0.8137	0.8228	0.8332	0.8388	0.4266	0.7743	0.8826
Dynamic-B	0.8792	0.8177	0.8938	0.8376	0.8902	0.9489	0.3634	0.7967	0.8353
I-O Motion	0.7891	0.6569	0.7764	0.7264	0.7296	0.7878	0.2002	0.7499	0.5036
Low-F rate	0.6259	0.6445	0.6588	0.6404	0.7743	0.7888	0.2482	0.6797	0.6022
PTZ	0.3241	0.3476	0.4615	0.3367	0.4282	0.5673	0.3503	0.6282	0.7993
Shadow	0.8832	0.8986	0.8913	0.8984	0.9084	0.9478	0.5295	0.9233	0.9712
Thermal	0.7768	0.8171	0.8324	0.8152	0.8303	0.8219	0.6038	0.8581	0.8594
Overall	0.7539	0.7566	0.7870	0.7653	0.7923	0.8320	0.4158	0.8056	0.8128

Comparisons of average F-measure in CDNet2014. The best and second best performing method for each challenge are shown in red and blue, respectively.

- This work introduces concepts of graph signal processing in the problem of background subtraction.
- Our algorithm is composed of: a Cascade Mask R-CNN for instance segmentation, a temporal median filter for background initialization, feature extraction for node representation, a k-nearest neighbors for graph construction, and minimization of the Sobolev norm of graph signals for the semi-supervised learning algorithm.
- For future work:
 - A generalized theory of graph signal processing [Ji and Tay (2018)] can be used to extend the graph signals y to fuzzy concepts [El Baf et al. (2008)], leading to a richer representation of moving and static objects.
 - Another important direction is to study an inductive framework [Hamilton et al. (2017)] for GraphBGS, trying to get a real-time implementation of GraphBGS [Cioppa et al. (2020)].
 - Perhaps, concepts of graph signal processing such as active semi-supervised learning [Anis et al. (2018)] could lead in new developments in the field of computer vision and end-to-end architectures for video analysis with semi-supervised learning.

Thanks. Questions?

00

- Anis, A., El Gamal, A., Avestimehr, A. S., and Ortega, A. (2018). A sampling theory perspective of graph-based semi-supervised learning. *IEEE Transactions on Information Theory*, 65(4):2322–2342.
- Cai, Z. and Vasconcelos, N. (2019). Cascade R-CNN: High quality object detection and instance segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence.*
- Cioppa, A., Van Droogenbroeck, M., and Braham, M. (2020). Real-time semantic background subtraction. In *ICIP*. IEEE.
- El Baf, F., Bouwmans, T., and Vachon, B. (2008). Fuzzy integral for moving object detection. In *FUZZ*, pages 1729–1736. IEEE.
- Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive representation learning on large graphs. In *NeurIPS*, pages 1024–1034.
- Ji, F. and Tay, W. P. (2018). Generalized graph signal processing. In *GlobalSIP*, pages 708–712. IEEE.
- Lucas, B. D., Kanade, T., et al. (1981). An iterative image registration technique with an application to stereo vision.
- Ojala, T., Pietikäinen, M., and Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, (7):971–987.
- Piccardi, M. (2004). Background subtraction techniques: A review. In *SMC*, volume 4, pages 3099–3104. IEEE.

Sequence	DECOLOR	ViBe	3WD	GRASTA	SuBSENSE	ROSL	ADMM	ORIMP	BSUV-Net	GraphBGS
Birds	0.1457	0.3354	0.1308	0.1320	0.4832	0.1478	0.0227	0.1394	0.2625	0.7143
Boats	0.2179	0.1854	0.1576	0.0678	0.4550	0.1637	0.1212	0.1100	0.6621	0.7594
Bottle	0.4765	0.4512	0.1364	0.1159	0.6570	0.2069	0.6589	0.1795	0.5039	0.8741
Chopper	0.6214	0.4930	0.3171	0.0842	0.6723	0.2920	0.1250	0.2653	0.3020	0.6956
Cyclists	0.2224	0.1211	0.1003	0.1243	0.1445	0.1366	0.1093	0.1242	0.4138	0.7330
Flock	0.2943	0.2306	0.2007	0.1612	0.2492	0.3409	0.1088	0.2605	0.0025	0.5872
Freeway	0.5229	0.4002	0.5028	0.0814	0.5518	0.3875	0.0816	0.1549	0.1185	0.3491
Hockey	0.3449	0.4195	0.2789	0.3149	0.3611	0.4106	0.2981	0.4296	0.6908	0.7608
Jump	0.3135	0.2636	0.2481	0.4175	0.2295	0.4198	0.0609	0.3073	0.8697	0.7727
Landing	0.0640	0.0433	0.0457	0.0414	0.0026	0.0506	0.0826	0.0442	0.0012	0.1822
Ocean	0.1315	0.1648	0.2055	0.1144	0.2533	0.1422	0.1809	0.1252	0.5335	0.8593
Peds	0.7942	0.5257	0.7536	0.4653	0.5154	0.7418	0.6667	0.4297	0.6738	0.8465
Skiing	0.3473	0.1441	0.1981	0.0927	0.2482	0.1942	0.0519	0.1791	0.0602	0.5333
Surf	0.0647	0.0462	0.0579	0.0523	0.0467	0.0453	0.0162	0.0317	0	0.5302
Surfers	0.1959	0.1189	0.0962	0.0742	0.1393	0.1184	0.1950	0.1044	0.4776	0.6400
Trafic	0.2732	0.1445	0.2032	0.0368	0.1165	0.1042	0.1044	0.0882	0	0.5722
Overall	0.3144	0.2555	0.2271	0.1485	0.3203	0.2439	0.1803	0.1858	0.3483	0.6506

TABLE III: Comparison of F-measure results over the videos of UCSD background subtraction dataset. The best and second best performing methods for each video are shown in red and blue, respectively.