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I. Introduction
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Real-Time Autonomous Driving

⚫ Real-time autonomous driving requires fast processing of sensor-

fused data from all kinds of devices embedded in the vehicle.



Scene Understanding

⚫ Safety driving for autonomous vehicle requires many vision tasks 

such as road segmentation, pedestrian detection, and vehicle 

recognition by sensors, including frontal cameras and LiDAR.
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Problems in Traditional Method

⚫ Current state-of-the-art methods detect the pedestrians 

and objects in spatial space, which is time-consuming. 
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Temporal-to-Spatial

⚫ we apply a thorough pedestrian motion segmentation and 

detection in a temporal-to-spatial approach. 
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Sequential Semantic Segmentation

⚫ We perform semantic segmentation sequentially along the 

time axis in 2D temporal layout.

8



9

II. Video Reduction through 

Temporal-to-Spatial 



Why we adopt Temporal-to-Spatial?

⚫ Traditional data processing 

based on full 2D video frames 

is time-consuming. 

⚫ Embedded hardware in 

vehicle has limited capability 

of computation and memory.
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Motion Profile

⚫ We sample in each frame at a belt pre-defined below the calibrated 

horizon to catch the temporal scenes ahead of vehicle;

⚫ We condense each belt into 1D array by averaging pixels vertically;

⚫ the 1D arrays from consecutive frames are copied into a spatial-temporal 

image, i.e., Motion Profile.



Principle of Motion Profile

⚫ The length of MP is the total number of frames in the video.

⚫ The width of MP is exactly as the same of the frame image.

⚫ The position of sample belt is set freely to cover a depth range.

⚫ Multiple belts at different heights with small overlaps can cover 

close, middle, and far depths, respectively. 
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Property of Motion Profile

⚫ Although only 1D data are sampled from each frame, their 

temporal concatenation in MP shows motion characteristics.

⚫ Compared to pedestrian detection in video volume, the data 

sheet of MP is the smallest and the pedestrian leg motion is less 

varied than their pose, shape, appearance, and illumination.

⚫ The motion traces of objects in driving video are reserved in the 

temporal continuity of MP, which directly provides information 

about driving direction and speed. 
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III. Pedestrian Motion in Motion Profile 



Pedestrian Motion in MP

⚫ Pedestrian motion in driving 

video with a green horizontal 

belt on legs. 

⚫ Sequentially projecting the 

average pixel values in the belt 

over consecutive frames to 

generate a temporal image.

⚫ Amplified views of legs at 

stopping and stepping 

moments.
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⚫ Pedestrian motion trace forms a crossing chain in MP.



Cyclic crossing-chain

⚫ When a pedestrian is walking, we can observe leg trajectories as a 

crossing chain. 

⚫ Legs step alternatively in a cycle along the trajectory. 

⚫ Because of the vertical averaging of pixels, we obtained more robust 

features than pixels, which are strong/long vertical edges in the 

frame. 

16



MP from multiple distances

⚫ To avoid collision in driving, we extract three MPs according to far, 

middle, and near distances. 

⚫ Pedestrians near to vehicle are more dangerous and thus need to 

be detected accurately and promptly. 

⚫ Pedestrian at the middle distance from ego-vehicle is useful for

path-planning in real autonomous driving.

⚫ Pedestrians at far distance have a lower resolution in MP but have 

chance to be re-identified when ego-vehicle gets closer. 

⚫ Adjacent belts have an overlap of certain pixels, which helps leg 

detection timely in one of MPs and ensures pedestrian motion 

observed continuously.
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MP from multiple distances
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⚫ far ⚫ mid ⚫ near



MP from different sensors
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Patterns of Pedestrian Motion in MP

⚫ Pedestrians walking on sidewalk or crossing street.

⚫ Vertical object occlusion generates crossing traces in MP as well, 

which will be excluded through deep learning as well.

⚫ Motion traces captured from a turning vehicle are skewed in MP. 

⚫ Pedestrian leg trace mixed with arm and body traces.

⚫ Humans standing-still can be followed as a trace, rather than 

stepping legs, which can still be distinguished using his/her width, 

position, and color by deep learning.
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Patterns of Pedestrian Motion in MP

21



22

IV. Semantic Segmentation of 

Pedestrian Motion in Motion Profile 



Data Pre1: Semantic Classes

⚫ Paired MP patches and labels in our dataset. Three semantic 

classes in the labels: Pedestrian in motion (green), human standing-

still (yellow) and background (black). 
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Data Pre2: Sequential Patch-Size

⚫ To achieve a fast response in real-time driving, our semantic 

algorithm uses a section of motion profile at each time as input 

incrementally, i.e., patch based. 

⚫ A patch has a fixed width (256pixels) and a time duration T 

(32frames) to preserve motion continuity and context for trace 

identification. 

⚫ The patch is temporally shifted every frame along the time axis to 

achieve the finest temporal resolution and earliest response to input. 

Thus, our network outputs one segmented line immediately after 

input without time latency.
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Data Pre2: Sequential Patch-Size
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Data Pre3: Depth-Invariant

⚫ Pedestrian motion at different depths has varied directions in MPs, 

but the shape of crossing-chain is clear at joints and stretches. 

⚫ To normalize the orientation for consistent training and testing by the 

deep learning network, three MPs from close to far are horizontally 

divided to 1, 2, and 3 columns, respectively.

⚫ They are horizontally scaled to a given width as input to the neural 

network. The time scale of them are absolute as mentioned above. 
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Data Pre3: Depth-Invariant
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Sequential Semantic Segmentation

⚫ The network performs semantic segmentation in patch size of 

32×256 at each time, which consists of an encoder-decoder module 

embedded with skip connections depicted in layer direction vertically.
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Network Structure 

⚫ Encoder-decoder module: The baseline of network structure of 

semantic segmentation for single patch is an encoder-decoder module 

embedded with skip-connections. It consists of five encoding and five 

decoding blocks symmetrically; each small block contains 

convolutional layer and a 2×2 pooling layer. 

⚫ Input/Output: Since the neural network steps 1 line (frame) for the 

minimum latency, it adopts small kernel size in convolutional and 

pooling filters of 1x1 and 2x2. We output latest line from the patch of 

32×256 pixels after decoding as the segmentation result.
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V. Temporal-Shift Memory
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Overlap in Sequential Semantic 

Segmentation

⚫ In testing semantic segmentation on MP, however, the deep 

network uses the temporal context in the pedestrian motion 

detection, which involves T-1 lines computed already for the 

latest line. 

⚫ Thus, the pyramid structure of encoding-decoding network has 

a large overlap on the data when sequentially scanning the 

Motion Profile along time axis. 
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Temporal-Shift Memory

⚫ Referencing Model: we propose a sequential model to 

avoid redundant data processing in online testing phase for 

real time driving. 

⚫ Accuracy lossless: This mechanism keeps the same 

mechanism of the encoding-decoding structure without 

accuracy loss but ensures the network to process only the 

newest lines at all network layers, which is in a true 

scanning mode.
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Temporal-Shift Memory

⚫ TSM avoids repeated computation by storing previously 

computed nodes hierarchically along neural layers.  

⚫ At each layer, only the latest nodes are updated through 

filtering and maximum pooling from the newly input line and 

the previously computed node involved for this operation.

⚫ The temporal-shift memory model requires an initial 

calculation of the network feature maps for the later updating 

of new input. After initialization, the network only works on a 

line for each new frame in a streaming style.
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Temporal-Shift Memory

⚫ (a) Pyramid structure of 

network with 2×2 pooling 

and data overlaps. Tree2 

repeats calculation by Tree1, 

T2 repeats T1’s. 

⚫ (b) TSM of 3 layers for 

illustration. Cells include 

temporal status. Update is 

done only on the newest 

nodes (marked in red). Time 

cells shifts to one older state 

at all layers.

⚫ (c) TSM avoids repeating 

calculation on overlapped 

data for sequential input after 

an initialization. 
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VI. Experiment



Dataset

⚫ We selected naturalistic driving videos and LiDAR data for 

pedestrian detection. 
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Quantitative Results
⚫ MP
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⚫ SS ⚫ MP ⚫ SS
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Quantitative Results
Far Mid Near Prediction (pixel) Prediction (box)
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Evaluation

(a) Pixel-wise result in color;

(b) Skeletons of pedestrian traces from labeled ground truth 

for calculating frame wise pedestrian detection rate.



Evaluation

⚫ LiDAR-based MP (top row) and camera-based MP with pixel wise 

semantic segmentation results.
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Evaluation
⚫ Accuracy of pedestrian trace at pixel level
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⚫ Accuracy of pedestrian trace at pixel level



Comparison to state-of-the-art

⚫ Comparison of our method with YOLO3 and Motion Filter:
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Comparison to state-of-the-art

Comparison of 

detecting results for 

the cases of:

⚫ sparse pedestrians;

⚫ occlusion, crowds;

⚫ color similar to

background;

⚫ standing-still 

person.
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Comparison to YOLO3
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Comparison to YOLO3

⚫ (i) less data for computation.

⚫ (ii) fast computing time (2ms) in frame advancing, much shorter than 

YOLO3 (370ms/fr.) on the same machine; 

⚫ (iii) preserving a better motion continuity, while YOLO3 leaves some 

gaps along walking chains. 

⚫ (iv) higher precision in body width and leg span than bounding 

boxes.
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VII. Conclusion



This paper presents pedestrian detection in driving video with a 

high efficiency based on the minimum data size and a low 

variation of motion patterns. 

The algorithm complexity of pedestrian detection is 

significantly reduced, and the detection speed is drastically 

faster than current pedestrian detection based on spatial 

analysis of their shape.
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VIII. Appendix
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Appendix: Video Results

⚫ https://www.youtube.co

m/watch?v=a-

ePUpbIZKw&feature=yo

utu.be

⚫ https://www.youtube.co

m/watch?v=BAOZOHXF

q8o&feature=youtu.be

⚫ https://www.youtube.co

m/watch?v=liFiHIdnsoI&

feature=youtu.be

https://www.youtube.com/watch?v=a-ePUpbIZKw&feature=youtu.be
https://www.youtube.com/watch?v=BAOZOHXFq8o&feature=youtu.be
https://www.youtube.com/watch?v=liFiHIdnsoI&feature=youtu.be
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Thank you!

⚫ Questions?


