

EAGLE: Large-scale Vehicle Detection Dataset in Real-World Scenarios using Aerial Imagery

Seyed Majid Azimi, Reza Bahmanyar, Corentin Henry and Franz Kurz

German Aerospace Center (DLR) Remote Sensing Technology Institute

Knowledge for Tomorrow

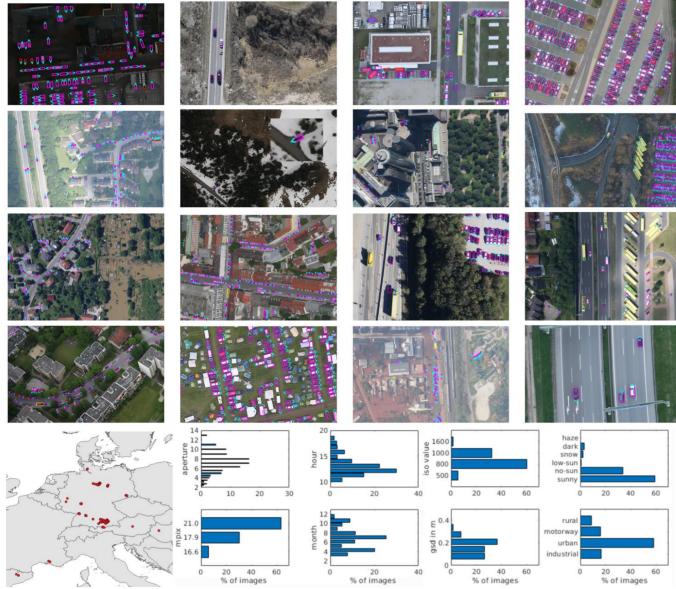
Robust Vehicle Detection for the Real-World Applications Disaster Management, Traffic Monitoring, Search & Rescue Missions, etc

Source: DLR Source: DLR

An algorithm suitable for such scenarios should be very accurate with high accuracy and robust to

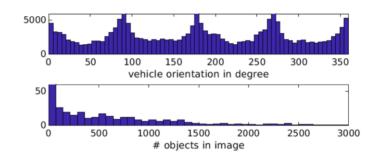
- Weather conditions: clouds, fog, haze, shadow, ...
- Minor and major occlusions, different backgrounds, tiny object size, different scales, etc

Large-scale Vehicle Detection Datasets in Remote Sensing are Scarce!


Datasets	# Vehicle	# Vehicle	# All	# Images	# All	Image	Annotation	Year
	Instances	Categories	Categories		Instances	Width (px)	Approach	
TAS	1,319	1	1	30	1,310	792	HBB	2008
NWPU-VHR-10	232	1	10	800	3,775	1000	HBB	2014
VEDAI	3,270	6	9	1,210	3,640	1024	OBB	2015
UCAS-AOD	2,819	1	2	910	6,029	1280	HBB	2015
DLR-3K-Vehicle	14,232	2	2	20	14,235	5616	OBB	2015
COWC	32,716	1	1	53	32,716	2000-19,000	One-Dot	2016
HRSC2016	0	0	1	1,070	2,976	1000	OBB	2016
RSOD	0	0	4	976	6,950	1000	HBB	2017
DOTA	43,462	2	15	2,806	188,282	300-4000	RBB	2017
EAGLE (ours)	215,986	2	2	8,280	215,986	936	OBB	2020

Current datasets for vehicle detection not only lacks high number of instances, but also they lack

- High-quality annotation esp. occluded vehicles
- Scenarios with poor visibility and weather condition
- Large-scale for #images, resolution variation, location, time, camera angle
- Real disasters


Addressing Current Issues with the Introduction of EAGLE

Comparison with the state-of-the-art Dataset DOTA

Sample Images

Statistic

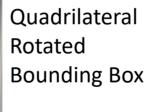
Distribution and Variation

Benchmark Results

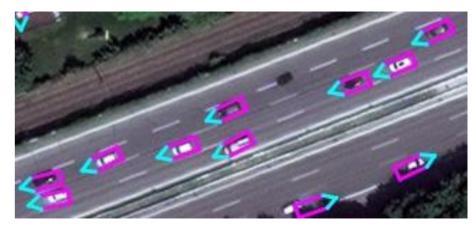
Method	Backbone	AP [%] (HBB)			AP [%] (RBB)			
		Mean	SV	LV	Mean	SV	LV	
Yolov3	Darknet-53	20.29	30.45	10.13	13.28	21.34	5.23	
SSD	InceptionV2	12.06	20.67	3.45	7.31	12.34	2.28	
RefineDet	VGG16	22.23	32.25	12.21	14.78	22.67	6.89	
R-FCN	ResNet101	30.61	46.85	14.37	21.06	35.56	6.56	
Faster-RCNN	ResNet101	31.84	48.34	15.34	23.15	39.29	7.02	
Mask-RCNN	ResNet101	30.81	46.51	15.11	22.54	36.65	8.43	
Cascade-RCNN	ResNet101	33.49	49.65	17.34	23.58	38.97	8.19	
SNIPER	ResNet101	30.74	48.34	13.14	21.97	38.23	5.72	
FPN	ResNet101	37.10	50.76	23.45	27.11	39.78	14.45	
TridenNet	ResNet101	30.53	47.16	13.91	22.53	37.16	7.91	
FCOS	ResNeXt101	38.80	52.94	24.67	27.67	41.24	14.10	
Cascade Mask-RCNN-H	Triple-ResNeXt152	39.29	53.45	25.14	30.22	43.84	16.60	
Cascade Mask-RCNN-R [Ours]	Triple-ResNeXt152	-	-	-	37.23	51.27	23.19	
Cascade Mask-RCNN-R [Ours]	Triple-ResNeXt152	-	-	-	37.23	51.27	23.19	

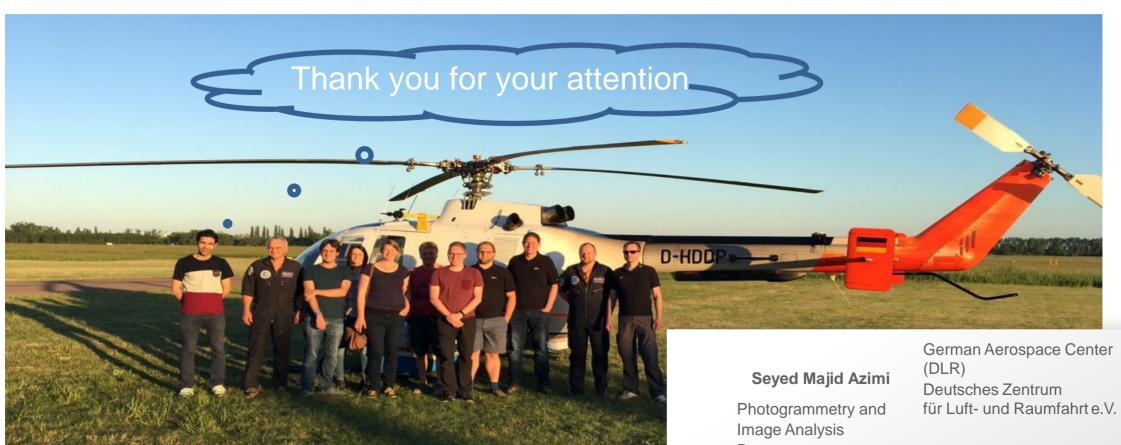

Method	Task	mAP $[\%]$	AP [%]		Training set	Test set	Avg.	SV	LV
			small-vehicle	large-vehicle	DOTA	DOTA	59.95	61.23	58.67
Cascade Mask-RCNN-H	HBB	33.54	50.16	16.92	DOTA	EAGLE	28.23	38.89	17.57
Cascade Mask-RCNN-R	RBB	30.18	46.82	13.54	EAGLE	DOTA	53.25	57.34	49.16
Cascade Mask-RCNN-O	OBB	32.02	48.13	15.91			33.23		
	•	•	•	•	EAGLE	EAGLE	39.29	53.45	25.14

Qualitative Performance



Horizontal Bounding Box





Oriented
Bounding Box

Generalization on Satellite imagery

Department

Remote Sensing Technology Institute

Muenchenerstr 20 82234 Wessling

Telephone E-Mail Internet

+49 815328-2970

seyedmajid.azimi@dlr.de www.DLR.de/eoc

