Mutually Guided Dual-Task Network for Scene Text Detection

Mengbiao Zhao^{1,2}, Wei Feng^{1,2}, Fei Yin^{1,2}, Xu-Yao Zhang^{1,2}, Cheng-Lin Liu^{1,2,3}

¹National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences

²University of Chinese Academy of Sciences

³CAS Center for Excellence of Brain Science and Intelligence Technology

Outline

1	Introduction
2	System Overview
3 -	Mutual Guidance Strategy
4	Loss Function
5	Experiments
6	Conclusions

Introduction

- There are two mainstream annotation formats for scene text datasets: word-level and line-level annotations.
- In previous works, word detection and text-line detection are usually treated separately.
- Word-level and line-level detection are closely related.

≻Architecture

- A backbone network (ResNet-50 FPN) for feature extraction.
- Two detection heads for words and text-lines detection, respectively.
- Two novel modules for the mutual guidance of the two tasks.

Mutual Guidance Strategy

For ease of analysis, we divide the training process into two stages.

Mutual Guidance

Stage 1

- E_{\cdot} : backbone network
- E_I : original features
- D_W : word detector
- D_L : text-line detector
- O_W : output results of word detector
- O_L : output results of text-line detector

$$\begin{cases} O_W = D_W(E_I), \\ O_L = D_L(E_I). \end{cases}$$

• Line filtering modules.

$$E_I' = E_I \odot G_W + E_I,$$

• Word enhancing modules.

$$E_I' = E_I + G_L,$$

$$\begin{cases} O'_{W} = D_{W}(E_{I}, G_{W}), \\ O'_{L} = D_{L}(E_{I}, G_{L}). \end{cases}$$

Loss Function

- > We use pair of datasets, one with word-level ground truth Y_W and one with line-level ground truth Y_L .
- For a data batch with Y_W , we just compute the dice coefficient loss between Y_W and its two stages' outputs O_W and O'_W .

$$\mathcal{L} = \sum_{t \in \{W,L\}} \sum_{X \in \{O_t,O_t'\}} b_t \cdot \mathcal{L}_{dice}(X,Y_t),$$

- Where b_t represents the category of the current data batch.
- If a data batch has ground truth Y_W only, then $b_W = 1, b_L = 0$ and vice verse.

Experiments

➤ Datasets

- ICDAR2015: Word-level annotated dataset.
- CTW1500: Line-level annotated dataset.

Experiments

➢ Models

- **Baseline**: The basic detector trained with word-level and line-level annotated data separately
- **Baseline + joint**: The basic detector jointly trained with word-level and line-level annotated data.
- **Dual-task**: Our proposed dual-task network jointly trained with word-level and line-level annotated data.
- Dual-task + guidance: Our proposed dual-task network jointly trained with word-level and line-level annotated data, and the mutual guidance strategy added.

Experiments

Ablation studies on ICDAR2015

Method	Р	R	F
Baseline [3]	81.5	79.7	80.6
Baseline+joint [3]	82.32	76.45	79.28
Dual-task	87.41	74.91	80.68
Dual-task+guidance	82.08	80.98	81.53

- The basic detector jointly trained with two datasets yields deteriorated performance.
- The dual-task network leads to an improved performance.
- The dual-task network trained with mutual guidance yields the best detection performance.

Comparison with State-of-the-Art Methods.

• Detection results on ICDAR2015.

Method	Ext	Р	R	F
EAST [27]	-	83.57	73.47	78.2
PixelLink [8]	-	82.9	81.7	82.3
TextBoxes++ [28]	~	87.2	76.7	81.7
DDR [1]	-	82.0	80.0	81.0
FOTS [29]	~	88.84	82.04	85.31
Mask TextSpotter [30]	~	91.6	81.0	86.0
TextField [31]	~	84.3	80.5	82.4
TextSnake [32]	~	84.9	80.4	82.6
PSENet [3]	-	81.5	79.7	80.6
PSENet [3]	~	86.9	84.5	85.7
Our Method	-	82.08	80.98	81.53
Our Method	~	88.60	84.54	86.52

- Comparison with State-of-the-Art Methods.
 - Detection results on CTW1500.

Method	Ext	Р	R	F
CTPN [12]	-	60.4	53.8	56.9
SegLink [33]	-	42.3	40.0	40.8
CTD+TLOC [4]	-	77.4	69.8	73.4
TextSnake [32]	~	67.9	85.3	75.6
Wang et al. [3]	-	80.1	80.2	80.1
TextField [31]	~	83.0	79.8	81.4
PSENet [3]	-	80.57	75.55	78.0
PSENet [3]	<	84.84	79.73	82.2
Our Method	-	81.48	78.42	79.92
Our Method	✓	85.59	80.21	82.81

Some examples of text detection.

ICDAR2015

CTW1500

 Each image can get two formats of detection results from two detection heads.

Conclusions

- Propose a text detection method that can perform both wordlevel and line-level text detection.
 - Dual-task network.
- Propose two novel modules for the mutual guidance of the two tasks.
 - Line filtering module.
 - Word enhancing module.
- Proposed method has achieved competitive performance.
- Future works
 - Weakly-supervised training.
 - Adding character-level detection.

Thanks & Question

