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 Pervasive ‘domain gap’ in real-world applications.
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 Pervasive ‘domain gap’ in real-world applications.
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Introduction

 Unsupervised domain adaptation (UDA) object detection:

A detector is trained with labeled source domain images and unlabeled target
domain images. Then, it is applied to detect objects in target domain images.
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Introduction

* Previous studies exploit the adaptation on full feature:

« Alignment on background is likely to pose additional difficulties, due to the
sophisticated layout and appearance in the background

Source domain — Clean weather Target domain — Foggy weather

Region of adaptatici |
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 Foreground-focused domain adaptation (FFDA):

 We mine the loss of the domain discriminators to concentrate on the
backpropagation of a foreground loss

Source domain — Clean weather Target domain — Foggy weather

Region of adaptatici ;
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Method

« Mining mask generation: Mining masks are generated using source
ground-truth and target predictions.
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Method

* Image level FFDA: We mine the loss in foreground area on the loss map

generated from image level domain discriminator.
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* Instance level FFDA: We mine the loss of identified foreground ROI
features from instance level domain discriminator.
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Method

« Multi-adversarial alignment: We attach multiple image level FFDA
subparts to build strong alignment on features.
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Experiments

« We evaluate our method on four datasets for different scenarios In
autonomous driving applications.

* Clear to Foggy weather (Cityscape -> Foggy Cityscape)
 Synthetic to real (SIM10K -> Cityscape)
» Cross camera (KITTI -> Cityscape)

 Daytime to nighttime (BDD100k daytime-> nighttime)



Experiments

 Mean average precision compared with previous SOTA and MLDA

baseline.

Table 1. Adaptation from Cityscape to Foggy Cityscape
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Table 2. Adaptation from SIM10K to Cityscape
and KITTI to Cityscape

Methods person rider car truck bus train mcycle bicycle|mAP Methods StoC | KtoC
Source trained 242 29.531.4 10.1 143 9.1 134 27.7 [20.0 Source trained 34.9 36.5
ART+PSA 34.0 46.9 52.1 30.8 43.2299 347 37.4 |38.6 SCDA 43.0 4.5
MLDA 33.2 44.244.8 282 41.828.7 30.5 365 |36.1 FAN 46.9 )
Ours (block3,4,5+ins)| 33.8 48.3 50.7 26.6 49.2 39.4 35.8 36.8 [40.1 Ours (block3.4.5+ins) | 46.4 70
Oracle 36.2 45.8 52.7 33.4 51.544.0 37.8 39.0 [42.6 L - -
Oracle 59.1
Table 2. Adaptation from BDD100K daytime to nighttime

Methods bike bus car motor person rider light sign train truck | mAP

Source trained 20.2 33.6 457 12.1 276 140 16.1 31.0 O 30.3 | 23.1

Strong-Weak 19.6 33.0 465 19.9 264 18.6 156 31.5 0 30.9 | 24.2

MLDA(Our impl.) 20.2 31.8 459 16.6 277 182 169 339 0 323 | 244

Ours(block3.4,5+ins) | 22.3 34.0 474 19.7 274 230 146 347 0 32.7 | 25.6

Oracle 194 39.6 56.1 178 2095 109 23 389 0 30.1 | 274
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Experiments

« Our method has two hyper-parameters: 1) Threshold T for filtering the prediction on
target images to provide reliable foreground areas. 2) Parameter A, which is utilized to
balance between the detector loss and adversarial loss.
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Experiments

* To test the influence of bringing In background adaptation, we replace the FFDA

Inside our framework with the domain adaptation parts that operate on full feature on
different levels as in MLDA.

Methods CtoF | StoC
MLDA (Our 1impl.) 35.8 41.8
Ours w/ full feature DA on instance level 37.5 45.5

Ours w/ full feature DA on image level blockS | 39.0 44.5
Ours w/ full feature DA on image level block4 | 37.2 44.2
Ours w/ full feature DA on 1image level block3 | 38.7 44.8

Ours 40.1 46.4
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Conclusion

 We present a straightforward and effective adversarial-based approach for UDA
object detection.

* We exploit the crucial factor- ‘foreground adaptation’ that could have significant
Influence on the adaptation result of object detection.
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Adaptation results

1. Clear to foggy weather adaptation
(Cityscape to Foggy Cityscape)
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Clear to foggy weather adaptatlon

Before adaptation After adaptation
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Clear to foggy weather adaptatlon

Before adaptation After adaptation
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Clear to foggy weather adaptation

Before adaptation After adaptation
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Adaptation results

2. Synthetic to real adaptation
(SIM10K to Cityscape)
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Synthetlc to real adaptatlon
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Synthetic to real adaptation

Before adaptation After adaptation
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Synthetlc to real adaptatlon
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Adaptation results

3. Cross-camera adaptation
(KITTI to Cityscape)

Source domain Target domain
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Cross -camera adaptatlon
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Cross-camera adaptation
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Cross-camera adaptation
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