%0/ THEEER
CHINESE ACADEMY OF SCIENCES w

Joint Face Alignment and 3D Face

Reconstruction with Efficient Convolution

Neural Networks

Keqiang Li, Huaiyu Wu*, Xiuqin Shang, Zhen Shen,
Gang Xiong, Xisong Dong, Bin Hu and Fei-Yue Wang

likeqiang2020(@jia.ac.cn

State Key Laboratory for Management and Control of Complex Systems
Institute of Automation, Chinese Academy of Sciences

The 25th International Conference on Pattern Recognition
(ICPR2020)



> Introduction

« Task:
Face Alignment and 3D Face Reconstruction

* Problem:

Recent methods based on CNN typically aim to learn parameters of
3D Morphable Model (3DMM) from 2D images to render face
alignment and 3D face reconstruction. Most algorithms are
designed for faces with small, medium yaw angles, which is
extremely challenging to align faces in large poses. At the same
time, they are not efficient usually.



> Introduction

« Challenge:

The problem is usually time consuming and difficult to learn
parameters accurately.

e Our Contribution:

(1) We propose a efficient network structure through Depthwise
Separable Convolution and Muti-scale Representation and dual
attention mechanisms together.

(2) For training, two cost functions are used to constraint and
optimize 3DMM parameters and 3D vertices. We finally provide a
light-weighted framework.

(3) Comparison on the challenging AFLW2000-3D and AFLW
datasets shows that our method achieves significant performance
on both tasks of 3D face reconstruction and face alignment.



| Related Work

» A variety of solutions have been proposed to solve the problems

 Model-based
3DDFA

DeFA

2DASL
Deep3DFace
 Not Model-based
» VRNet

» PRNet



» 3D morphable model

« Fitting a dense 3D morphable model(3DMM) instead of detecting
landmarks, which describes the 3D face space with PCA
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« S can be projected onto the 2D image plane with the scale
orthographic projection to generate a 2D face

V=f«xPr«Il«S+t
« Putting them together, we have in total 62 parameters
p=|a, a, f t I]



> Model Overview

(a) Our Framework

Mobile-FRNet

(b) Train Pipeline
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» Network Structure
Based on Mobilenetv2 , we design a novel and efficient network
structure named Mobile-FRNet.

It applies depthwise separable convolution, muti-scale
representation, channel attention, spatial attention mechanism.
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» Network Structure

The convolution layers of a set of filters and SGE Module are called
MobileBlock.

e channel dimension: SE module
» spatial dimension : SGE module

Convixt Convixt « MobileBlock are repeated n

[ [ e 5 [ xa] | times for extracting deep
Duwise3x3 features, an SE Module is added
B | between each Layer
* multi-scale representation and
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SGE module are applied in
conbd . MobileBlock.

l SGE Module
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» Loss Function

Employ the Weighted Parameter Distance Cost (WPDC) to learn parameter

E’u!pdc — (pg o p)T W (pg o p)

Make use of Wing Loss to constrain 3D face vertices as follows:

feln(I+[AV(p)|/e)  if |AV(p)| <w
wing — |$1_.:*(p)| — otherwise

Thus the overall training loss
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* Train data:
300W-LP
 Test dataset :
(1) AFLW.
(2) ALFW2000-3D.
* The metric to evaluate the performance.
Normalized Mean Error (NME)
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»> Face Alignment

Select some face images for qualitative testing in ALFW2000-3D dataset
randomly.
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Performance comparison on AFLW2000-3D(68 landmarks) and AFLW (21
landmarks).

AFLW DataSet (21 pts) AFLW2000-3D Dataset (68 pts)
Method [0° —30°] [30° —60°] [60° —90°] Mean Std [0° —30°] [30° —60°] [60° —90°] Mean Std
3DDFA [6] 5.000 5.060 6.740 5.600  0.990 3.780 4.540 7.930 5420 2210
3DDFA+SDM [6] 4.750 4.830 6.380 5.320  0.920 3.430 4.240 7.170 4,940 1.970
3DSTN [11] - - - - - 3.150 4.330 5.980 4.490 -
DeFA [3] - - - - - - - - 4.500 -
Nonlinear 3DMM [42] - - - - - - - - 4,700 -
DAMDNet [15] 4.359 5.209 6.028 5.199  0.682 2.907 3.830 4.953 3.897  0.837
Mobile-FRNet 4.199 4.862 5.668 4910  0.601 2.930 3.799 4.768 3.832  0.751

Evaluation is performed on all points with both the 2D (left) and 3D (right)
coordinates.
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» 3D Face Reconstruction

Employ NME to evaluate our method on the task of 3D face
reconstruction.
We choose baseline methods including 3DDFA, DeFA, MobileNet_v2.
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» Comparisons of Different Networks Structures

The experimental network structures include ResNeXt50,MobileNetV2,
DenseNet121 and our proposed Mobile-FRNet.

AFLW DataSet(21 pts) AFLW2000-3D DataSet(68 pts)
Net Params(M)  GELOPs _ [0° —30°] [30° —60°] [60° —90°] Mean _ Std _ [0° —30°] [30° —60°] [60° —90°] Mean _ Sid
ResNeXt50 [43] 2311 1.319 4.599 5.516 6.297 5471 0.694 3.122 4.065 5.351 4179 0913
Mobilenet_v2 [37] 2.38 0.109 4.643 5.581 6.397 5540 0716 3.236 4.080 5.181 4.165 0.796
DenseNet121 [44] 7.02 0.800 4.442 5.249 6.168 5286  0.705 3.051 3.912 5.297 4.087 0925
Mobile-FRNet(no attention) 2.40 0.110 4.371 5.199 6.031 5201 0.678 2.962 3.856 4,991 3936 0.830
Mobile-FRNet 2.60 0.120 4.199 4.862 5.668 4910 0.601 2.930 3.799 4.768 3.832  0.751
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« We propose a method Mobile-FRNet which simultaneously
completes 3D face reconstruction and provides dense alignment
results from an input 2D face image.

* Quantitative and qualitative results show that our method is robust to
large poses and occlusions. Experiments on two challenging face
datasets illustrate the effectiveness of Mobile-FRNet on both 3D face
reconstruction and face alignment by comparing with other methods.

* Our method also makes a good compromise between accuracy and
efficiency.
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