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Tensor Recovery

◮ Tensors, or multi-way arrays, have been extensively used in
computer vision, signal processing and machine learning.

◮ Due to technical reasons, tensors in most applications are
incomplete or polluted. Generically, recovering a tensor from
corrupted observations is an inverse problem, which is
ill-posed without prior knowledge.

◮ Prior knowledge: low rank.

◮ But what is rank? Based on T-SVD.



Tensor Recovery

◮ We mainly consider two tensor recovery problems: tensor
completion and tensor robust principal component analysis
(TRPCA).

◮ Tensor completion: estimating the missing values in tensors
from partially observed data.

◮ TRPCA: decomposing a tensor into a low-rank tensor and
sparse tensor.
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Non-convex Penalties

◮ As in the matrix case, the choices of rank surrogate function
and sparsity measure substantially influence the final results.

◮ The nuclear norm of a matrix is equivalent to the ℓ1−norm of
its singular value. However, ℓ1−norm over-penalizes large
entries of vectors.

◮ Smoothly clipped absolute deviation (SCAD) penalty and
minimax concave plus (MCP) penalty were proposed as ideal
penalty functions.

◮ This inspires us that nuclear norm based tensor rank surrogate
functions and ℓ1−norm based tensor sparsity measure may
suffer from a similar problem.

◮ To alleviate such phenomena, we propose to use non-convex
penalties (SCAD and MCP) instead of an ℓ1−norm in tensor
nuclear norm and tensor sparsity measures.



Solving the Optimization Problem

◮ The introduction of non-convex penalties makes optimization
problems even harder to solve.

◮ Once we replace ℓ1−norm by SCAD or MCP, the problem is
not convex anymore.

◮ We apply the majorization minimization algorithm to solve the
non-convex optimization problems and analyze the theoretical
properties of these algorithms.



Tensor Sigunlar Value Decomposition

Theorem (T-SVD)

Suppose A ∈ Rn1×n2×n3 . Then there exists tensors
U ∈ Rn1×n1×n3 ,V ∈ Rn2×n2×n3 and S ∈ Rn1×n2×n3 such that
A = U ∗ S ∗ V∗. Furthermore, U and V are orthogonal, while S is
f-diagonal.
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Figure: An illustration of the t-SVD of an n1 × n2 × n3 tensor.

Definition (Tensor nuclear norm)

Let A = U ∗ S ∗ V∗ be the t-SVD of A, the nuclear norm of A is
defined as ‖A‖∗ =

!
i S(i , i , 1) = 1

n3

!
k S(i , i , k).



Non-convex Penalties

Definition (SCAD)

For some γ > 2 and λ > 0, the SCAD function is given by

ϕSCAD
λ,γ (t) =

"
#$

#%

λ|t| if|t| ≤ λ,
γλ|t|−0.5(t2+λ2)

γ−1 ifλ < |t| < γλ,
γ+1
2 λ2 if|t| > γλ.

(1)

Definition (MCP)

For some γ > 1 and λ > 0, the MCP function is given by

ϕMCP
λ,γ (t) =

&
λ|t|− t2

2γ if|t| < γλ,
γλ2

2 if|t| ≥ γλ.
(2)



A Novel Tensor Sparsity Measure

The novel tensor sparsity measure is defined as

Φλ,γ(A) =

n1'

i=1

n2'

j=1

n3'

k=1

ϕλ,γ(Aijk). (3)

Proposition

For A ∈ Rn1×n2×n3 , Φλ,γ(A) satisfies:

(i) Φλ,γ(A) ≥ 0 with the equality holds iff A = 0;

(ii) Φλ,γ(A) is concave with respect to |A|;
(iii) Φλ,γ(A) is increasing in γ, Φλ,γ(A) ≤ λ‖A‖1 and

limγ→∞Φλ,γ(A) = λ‖A‖1.



A Novel Tensor Rank Penalty

Suppose A has t-SVD A = U ∗ S ∗ V∗, we define the γ−norm of
A as

‖A‖γ =
1

n3

'

i ,k

ϕ1,γ(S(i , i , k)). (4)

Proposition

For A ∈ Rn1×n2×n3 , suppose A has t-SVD A = U ∗ S ∗ V∗, then
‖A‖γ satisfies:

(i) ‖A‖γ ≥ 0 with equality holds iff A = 0;

(ii) ‖A‖γ is increasing in γ, ‖A‖γ ≤ ‖A‖∗ and
limγ→∞ ‖A‖γ = ‖A‖∗;

(iii) ‖A‖γ is concave with respect to {S(i , i , k)}i ,k ;
(iv) ‖A‖γ is orthogonal invariant, i .e., for any orthogonal tensors

P ∈ Rn1×n1×n3 ,Q ∈ Rn2×n2×n3 , we have
‖P ∗A ∗Q‖γ = ‖A‖γ .



Majorization Functions

Theorem
We can view Φλ,µ(X ) as a function of |X |, and ‖X‖γ as a

function of {S(i , i , k)}i ,k . For any X old, let

Qλ,γ(X|X old) = Φλ,γ(X old) +
!

i,j,k

ϕ′
λ,γ(|X old

ijk |)(|Xijk |− |X old
ijk |),

Qγ(X|X old) = ‖X old‖γ +
1

n3

!

i,k

ϕ′
1,γ(S

old
iik )(S iik − Sold

iik ),
(5)

then

Qλ,γ(X old|X old) = Φλ,γ(X old),Φλ,γ(X ) ≤ Qλ,γ(X|X old),

Qγ(X old|X old) = ‖X old‖γ , ‖X‖γ ≤ Qγ(X|X old).
(6)



Generalized Soft Thresholding

Definition (Generalized soft thresholding)

Suppose X ,W ∈ Rn1×n2×n3 , the generalized soft thresholding
operator is defined as

[TW(X )]ijk = TWijk
(Xijk). (7)

Theorem
For ∀µ > 0, let Wijk = ϕ′

λ,γ(|X old
ijk |)/µ, then

TW(Y) = argmin
X

Qλ,γ(X|X old) +
µ

2
‖X − Y‖2F . (8)



Generalized Tensor Singular Value Thresholding

Definition (Generalized t-SVT)

Suppose a 3-way tensor Y has t-SVD Y = U ∗ S ∗ V∗, W is a
tensor with the same shape of Y, the generalized tensor singular
value thresholding operator is defined as

DW(Y) = U ∗ S̃ ∗ V∗, (9)

where S̃ = ifft(TW(S), 3).

Theorem
For ∀µ > 0, let Wijk = δjiϕ

′
1,γ(S

old
iik )/µ where δji is the Kronecker

symbol, then

DW(Y) = argmin
X

Qγ(X|X old) +
µ

2
‖X − Y‖2F . (10)



Non-convex Tensor Completion

◮ Given a partially observed tensor O ∈ Rn1×n2×n3 , tensor
completion task aims to recover the full tensor X which
coincides with O in the observed positions. Suppose the
observed positions are indexed by Ω, i .e., Ωijk = 1 denotes the
(i , j , k)−th element is observed while Ωijk = 0 denotes the
(i , j , k)−th element is unknown. Based on low rank
assumption, tensor completion can be modeled as

min
X

rank(X ) s.t. OΩ = XΩ. (11)

◮ Use the proposed tensor γ−norm to replace “rank” :

min
X

‖X‖γ s.t. OΩ = XΩ. (12)

◮ Majorization Minimization:

min
X

Qγ(X|X old) s.t. OΩ = XΩ. (13)



Non-convex Tensor Completoin

Theorem
The iteration sequence generated by
X t+1 ∈ argminOΩ=XΩ

Qγ(X|X t) is non-increasing, i .e.,
‖X t+1‖γ ≤ ‖X t‖γ and converges to some Q∗. Besides, there
exists a subsequence {X ik}∞k=1 converges to a minimal point X∗ of
‖X‖γ on {X |OΩ = XΩ}.



Non-convex TRPCA

◮ Given a tensor X , the goal of robust PCA is to decompose X
into two parts: low-rank tensor L and sparse tensor E . This
problem can be formulated as

min
L,E

rank(L) + ‖E‖0 s.t. L+ E = X . (14)

◮ Apply the proposed novel sparsity measure and tensor
γ−norm, we obtain

min
L,E

‖L‖γ1 + Φλ,γ2(E) s.t. L+ E = X . (15)

◮ Majorization minimization:

min
L,E

Qγ1(L|Lold) + Qλ,γ2(E|Eold) s.t. L+ E = X . (16)



Non-convex TRPCA

Theorem
The iteration sequence generated by

(Lt+1, E t+1) ∈ arg min
L+E=X

Qγ1(L|Lt) + Qλ,γ2(E|E t)

is non-increasing, i .e.,
‖Lt+1‖γ1 + Φλ,γ2(E t+1) ≤ ‖Lt‖γ1 + Φλ,γ2(E t) and converges to
some Q∗. Besides, there exists a subsequence {(Lik , E ik )}∞k=1

converges to a minimal point (L∗, E∗) of ‖L‖γ1 + Φλ,γ2(E) on
{(L, E)|L+ E = X}.



Experimental Results



Experimental Results


