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Tensor Recovery

» Tensors, or multi-way arrays, have been extensively used in
computer vision, signal processing and machine learning.

» Due to technical reasons, tensors in most applications are
incomplete or polluted. Generically, recovering a tensor from
corrupted observations is an inverse problem, which is
ill-posed without prior knowledge.

» Prior knowledge: low rank.

» But what is rank? Based on T-SVD.



Tensor Recovery

> We mainly consider two tensor recovery problems: tensor
completion and tensor robust principal component analysis
(TRPCA).

» Tensor completion: estimating the missing values in tensors
from partially observed data.

» TRPCA: decomposing a tensor into a low-rank tensor and
sparse tensor.
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Non-convex Penalties

>

>

As in the matrix case, the choices of rank surrogate function
and sparsity measure substantially influence the final results.

The nuclear norm of a matrix is equivalent to the #;—norm of
its singular value. However, £1—norm over-penalizes large
entries of vectors.

Smoothly clipped absolute deviation (SCAD) penalty and
minimax concave plus (MCP) penalty were proposed as ideal
penalty functions.

This inspires us that nuclear norm based tensor rank surrogate
functions and #1—norm based tensor sparsity measure may
suffer from a similar problem.

To alleviate such phenomena, we propose to use non-convex
penalties (SCAD and MCP) instead of an ¢;—norm in tensor
nuclear norm and tensor sparsity measures.



Solving the Optimization Problem

» The introduction of non-convex penalties makes optimization
problems even harder to solve.

» Once we replace £1—norm by SCAD or MCP, the problem is
not convex anymore.

> We apply the majorization minimization algorithm to solve the
non-convex optimization problems and analyze the theoretical
properties of these algorithms.



Tensor Sigunlar Value Decomposition
Theorem (T-SVD)

Suppose A € RM*MXm_ Then there exists tensors

U € RMm>Xmxns ) ¢ RMmXMmXn3 gnd § € RM*MmX3 g ch that
A=U xS xV*. Furthermore, U and )V are orthogonal, while S is
f-diagonal.

n2

Figure: An illustration of the t-SVD of an n; X n, X n3 tensor.

Definition (Tensor nuclear norm)

Let A=U %S *x V* be the t-SVD of A, Lﬁe nuclear norm of A is
defined as || All. = >°; 8(i,i,1) = = 32, S(i, i, k).



Non-convex Penalties

Definition (SCAD)
For some v > 2 and A > 0, the SCAD function is given by

At if[t] <A,
2
PROAP () = § ROy < (e <qh, (1)
7;1)\2 if[t] > yA.

Definition (MCP)
For some v > 1 and A > 0, the MCP function is given by

A1) {)\|t|—— if[t] < A, ©

2’ it > YA



A Novel Tensor Sparsity Measure

The novel tensor sparsity measure is defined as

ni N n3

Oxr(A) =D D> oa s (A)- (3)

i=1 j=1 k=1

Proposition
For A € Rm>mxm &, (A) satisfies:
(i) ®x~(A) > 0 with the equality holds iff A = 0;
(ii) ®x~(A) is concave with respect to | A,
(iii) ®x~(A) is increasing in v, P (A) < A||All1 and
limy oo P (A) = A A1



A Novel Tensor Rank Penalty

Suppose A has t-SVD A =U xS = V*, we define the y—norm of
A as

Al = 2 3 61 (S0 1. K) ()
ik

Proposition

For A € Rm>mXns syppose A has t-SVD A =U xS x V*, then
||All, satisfies:

(i) |l Ally > 0 with equality holds iff A = 0;

(i) || Ay is increasing in =y, ||Al|, < ||All« and
i oo [l = AL

(iii) |A|ly is concave with respect to {S(i,i, k)}ik;

(iv) |lA|ly is orthogonal invariant, i.e., for any orthogonal tensors
P e Rmxmxm 0 c RmXmXm e have
1P+ Ax Qlly = || Al



Majorization Functions

Theorem
We can view ®) ,(X') as a function of |X|, and || X||, as a

function of {S(i, i, k)}i k. For any X°9, let

Quy (X]XM) = b (X°9) + > b L (12D (Xl — | X57)).
ik
old old 1 ;  ,=old, —= —old (5)
Qy (X|X%) = [|A°9, + s Z 14 (S )(Siik — Siiwc )
ik
then

Qo (A = @ (A1), 0 () < Qup (XX,
Qu (XM A0) = [, [ Xy < @y (X[ X°).



Generalized Soft Thresholding

Definition (Generalized soft thresholding)

Suppose X', VW € RM*MXMs the generalized soft thresholding
operator is defined as

[T (X)]iik = T (Xijk)- (7)

Theorem
For Vi >0, let Wiy = <,o’>\7,y(|/'\,’,-j?,'<d )/, then

Tw(Y) = argmin Qu, (X]2°%) + Z|X — VE. (8)



Generalized Tensor Singular Value Thresholding

Definition (Generalized t-SVT)

Suppose a 3-way tensor Y has t-SVD Y =U«S«V*, W is a
tensor with the same shape of ), the generalized tensor singular
value thresholding operator is defined as

Dw(Y) =U xS xV*, (9)
where § = ifft(Tyw(S),3).

Theorem ' u .
ForVu > 0, let Wi = 5{@’177(32* )/ where &' is the Kronecker
symbol, then

Dy(Y) = argmin @, (X|2°) + Z|X ~ Y. (10)



Non-convex Tensor Completion

» Given a partially observed tensor O € R™*™X" tensor
completion task aims to recover the full tensor X which
coincides with O in the observed positions. Suppose the
observed positions are indexed by €, i.e., ;) = 1 denotes the
(i,j, k)—th element is observed while Q;j = 0 denotes the
(i,j, k)—th element is unknown. Based on low rank
assumption, tensor completion can be modeled as

m)in rank(X) s.t. Oq = Xq. (11)
» Use the proposed tensor v—norm to replace “rank” :
m)in Xy st Oq = Xq. (12)
» Majorization Minimization:

min Q,(X]x°) st Oq = Xo. (13)



Non-convex Tensor Completoin

Theorem

The iteration sequence generated by

Xt € argminp,—x, Q4(X|X?) is non-increasing, i.e.,

| XLl < |||, and converges to some Q*. Besides, there

exists a subsequence {X'x}7° , converges to a minimal point X, of
| X[}y on {X[Oq = Xq}.



Non-convex TRPCA

» Given a tensor X, the goal of robust PCA is to decompose X
into two parts: low-rank tensor £ and sparse tensor £. This
problem can be formulated as

rEign rank(£) + [[€]lo st L+ E = 4X. (14)

)

» Apply the proposed novel sparsity measure and tensor
~y—norm, we obtain

rBign L]y, + Prpp(E) st LAE=X. (15)

» Majorization minimization:

min Q (L]1L%) + Qr -, (E|EM) st L+ E=X. (16)



Non-convex TRPCA

Theorem
The iteration sequence generated by

(L7 E7T) e arg min | Qu (LILY) + Qv (EIET)

is non-increasing, i.e.,

L5 |y 4+ Paq (EFFY) < [|LE||4, 4+ Paq,(EF) and converges to
some Q. Besides, there exists a subsequence {(L',E)}%° |
converges to a minimal point (L., &) of || L], + Pr~,(E) on
{(L,E)L+E =X}



Experimental Results

TABLE 1
‘TENSOR COMPLETION PERFORMANCES EVALUATION ON NATURAL IMAGES UNDER VARYING SAMPLING RATES.

20% 40% 60% 80% "
Method time (s)
PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM PSNR SSIM FSIM

SiLRTC 23.59 0.798 0.822 27.987 0.899 0915 3224 0.951 0.964 3747 0.977 0.988 19.95
HaLRTC ~ 23.82 0.797 0.828 2839 0902 0.920 33.038 0.953 0968 3927 0.978 0.991 31.32
FBCP 24.08 0.668 0.794 26.40 0.753 0.837 27.35 0.799 0.857 27.71 0.82 0.865 103.68
t-SVD 24.13  0.764 0.835 29.703 0.893 0.931 36.03 0.950 0.977 45.04 0.969  0.992 33.47
t+TNN 2530 0.841 0.864 30.50 0.923 0.943 36.27 0.952 0.978 44.14 0967  0.991 3.03

LRTCmep 2570 0.845 0.869 31.06 0.927 0946 36.87 0959 0.980 4546 0.973 0.993 3.79
LRTCscqa 25.70 0.844 0.869 31.04 0926 0946 3684 0959 0980 4545 0973 0.993 3.83

TABLE I
TENSOR COMPLETION PERFORMANCES EVALUATION ON HYPERSPECTRAL IMAGES UNDER VARYING SAMPLING RATES. THE UNIT IS 10~ FOR MSE.

20% 40% 60% 80% .
Method time (s)
PSNR MSE ERGAS PSNR MSE ERGAS PSNR MSE ERGAS  PSNR MSE ERGAS

SILRTC 41.71 4.70 30.912 45.46 1.95 21.524 49.14 0.827 14.412 52.86 0.354 10.341 42.21
HaLRTC 4211  4.53  29.626 4595 190 20.556  49.79  0.801 13.514 53.67 0.342 9.660 53.11
FBCP 37.09 1447 52931 43.25 3.85 29.318 46.00 2.225 22.344 46.67 2,011 20.688 210.18
-SVD 41.64 5.10 31.835 45.52 212 22.142 49.42 0.886 14.685 53.49 0.365 10.157 224.21
+TNN 4246 381 28702 46.07 160 20.135 49.82 0.667 13.272 53.61 0.290 9.515  47.29

LRTCpep 4291 358 27.799 46.75 151 19.684 5047 0.665 13.293 54.11 0.316 9.642 70.95
LRTCscaa 4291 358 27.804 46.76 151 19.684 5046 0666 13298 54.11 0.316 9.642 71.14




Experimental Results

Original image Corrupted image RPCA TRPCA TRPCAncp TRPCAqcad

Fig. 4. Tensor RPCA performance comparison on example images. From top to bottom: p,, = 0.1,0.2,0.3,0.4.
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Fig. 5. Comparison of PSNR values obtained by RPCA, TRPCA, TRPCAmcp, TRPCA;caq on randomly selected 50 images.
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