On the Information of Feature Maps and Pruning of Deep Neural Networks

Mohammadreza Soltani

Duke University

1. Introduction

- 2. Estimating the Mutual Information
- 3. Proposed Pruning Algorithm
- 4. Experimental Results

INTRODUCTION

MOTIVATION AND PROBLEM STATEMENT

- Energy consumption for limited-resource embedded systems
- Very large Memory for saving the weights of a model
- Huge amount of computation for product operation
- For example, under 45nm CMOS technology,
 - A 32bit floating point add consumes 0.9pJ
 - A 32bit SRAM cache access requires 5pJ
 - A 32bit DRAM memory access takes 640pJ
- Running a 1 billion connection neural network, for example, at 20 fps needs almost 13W power just for DRAM!!!
- Need to compress model for deployment and fast inference running-time

- Robustness of deep architectures with *skip-connection* against coarse pruning
 - Removing a random layer doesn't hurt the performance.
 - Removing the models without *skip-connection* drops the performance dramatically.
- $\cdot\,$ Our focus is to investigate this phenomena in more depth
- Studying two prominent examples of models with *skip-connection*: Resnet and DenseNet

DNNs with Skip-units

- A *skip-unit* is defined as a set of layers, and each layer consists of sequential operations including *Conv*, *Pooling*, *ReLU*, *BN*, *Dropout*, etc.
- A skip-units is mathematically defined as

$$U_{\ell} = \Psi(T_{\ell}, U_{1:\ell-1}, \alpha_{\ell}), \ \ell = 1, 2, \dots, L,$$

- $U_{1:\ell-1}$, the input of ℓ -th unit
- $T_{\ell} = f_{\ell}(U_{\ell-1})$, the output in the skip-unit
- $\cdot f_\ell$, the composition of aforementioned operations
- α_{ℓ} 's are binary variables and Ψ denotes an operation that combines T_{ℓ} and $U_{1:\ell-1}$.

Resnet and DenseNet

• ResNet architecture Ψ_{res} and DenseNet architecture Ψ_{den} are respectively given by:

$$U_{\ell} = \Psi_{res}(T_{\ell}, U_{\ell:\ell-1}, \alpha_{\ell}) = \alpha_{\ell}T_{\ell} + \mathcal{A}_{\ell-1}U_{\ell-1},$$

 $U_{\ell} = \Psi_{den}(T_{\ell}, U_{\ell:\ell-1}, \alpha_{\ell}) = \text{Concat}(\alpha_{\ell}T_{\ell}, U_{1:\ell-1}),$

- · Concat is the concatenation operation.
- · $\mathcal{A}_{\ell-1}$ is an identity or a convolution operator.

Figure 1: Two consecutive skip-units in a ResNet (top) and DesNet (bottom) family, respectively.

Compressing skip-units models: Pruning the model by removing the redundant skip-units based on their learned information.

- 1. How to study the learned features?
- 2. How to capture the information in the learned features?
- 3. How to quantify the redundant the skip-units?

Mutual Information as a measure of information of skip-units:

- Measuring the mutual information between the skip-units and the output of the model
- \cdot Clustering the units based on their mutual information
- Keeping only the cluster heads ($\alpha=$ 1)
- Removing the other units in each cluster from the graph of the model ($\alpha = 0$)

ESTIMATING THE MUTUAL INFORMATION

UPPER BOUND ON THE MUTUAL INFORMATION

- Following the method of Kolchinsky, et al., 2017, an upper bound is used for estimating the mutual information.
- Modeling the underlying probability distribution with a Gaussian mixture model with the number of components equals to the training samples.

$$\begin{aligned} H(T;Y) &= H(T) - H(T|Y) \\ &\leq -\frac{1}{n} \sum_{i=1}^{n} \ln \frac{1}{n} \sum_{j=1}^{n} \exp\left(-\frac{||\mu_{j} - \mu_{i}||_{2}^{2}}{2\sigma^{2}}\right) \\ &- \sum_{k=0}^{l-1} p_{k} \left(-\frac{1}{n_{k}} \sum_{\substack{j=1\\y_{j}=k}}^{n} \ln \frac{1}{n_{k}} \sum_{\substack{j=1\\y_{j}=k}}^{n_{k}} \exp\left(-\frac{1}{4} \frac{||\mu_{j} - \mu_{i}||_{2}^{2}}{2\sigma^{2}}\right)\right), \end{aligned}$$

- $P_k = \frac{n_k}{n}$ denotes the probability of class k and $n_k = \sum_{i=1}^{n} \mathbb{I}(y_i = k).$
- μ_i is the mean of each Gaussian component and σ is set to a small number.

PROPOSED PRUNING ALGORITHM

Multi-Stage Pruning with Information Clustering (MSPIC)

Algorithm 1

INPUT:

DNN⁰: Pre-trained Deep Neural Network S⁰. The index set of units T_l : Feature maps, $l = 1, 2, ..., |S^0|$ N: Number of stages R^{t} : Resolution vector. $t = 0, 1, \ldots, N - 1$ ϵ^t : Error threshold. $t = 0, 1, \dots, N-1$ for $t = 0, 1, \dots, N - 1$ do Compute $I(T_l^t, Y), l = 1, ..., |S^t|$ using DNN^t Construct $\mathbf{I}^{\mathbf{t}} = [I(T_1^t; Y), I(T_2^t; Y), \dots, I(T_{|S|}^t; Y)]$ $\begin{array}{l} = [l(T_1^t; \gamma), l(T_2^t; \gamma), \dots, l(l_1^t]_{|S||}; \gamma)] \\ \{ Cluster_1^{policy_1}, \dots, Cluster_{M_{policy_1}^t}^{R^t}, \dots, Cluster_{M_{policy_1}^t}^{R^t} \} = Cluster(R^t, I^t, S^t) \\ \end{array}$ for policy in R^t do for $j = 1, 2, ..., M_{policy}^{t}$ do $a_{l} = 1, l = \min_{k \in Cluster_{i}^{policy}} k$ $a_{U} = 0, \forall u \in Cluster_{i}^{policy} \setminus l$ end for Compute Test^terror for given policy end for Select one policy with Test^t_{arror} $< \epsilon^{t}$ $S^{t+1} \leftarrow S^t \setminus \{v : a_v = 0, v \in S\}$ $DNN^{t+1} \leftarrow Re$ -train the resulted sub-network with the trained weights in stage t end for Return pruned model with $|S^{N-1}|$ units

EXPERIMENTAL RESULTS

1. Datasets.

Dataset	Train data	Test data	Image Size	Classes
CIFAR-10	50000	10000	$32 \times 32 \times 3$	10
CIFAR-100	50000	10000	$32 \times 32 \times 3$	100
Tiny ImageNet	100000	10000	$64 \times 64 \times 3$	200

2. Model architectures:

Model	Units	Layers	Param. (M)	FLOPs (M)
ResNet-56	[9,9,9]	56	0.85	126.54
ResNet-164	[18, 18, 18]	164	1.70	254.94
DenseNet-100	[6, 12, 24, 16]	100	0.80	305.10

Model	Test Accuracy	Param. (M)	FLOPs (M)	Red.(%)
ResNet-56 (full)	0.9334	0.85	126.55	-
ResNet-56	0.9128	0.23	42.30	72.72
ResNet-164 (full)	0.9569	1.70	254.94	-
ResNet164 (t=2)	0.9207	0.99	143.90	41.53
ResNet164 (t=7)	0.9173	0.47	112.50	72.02
DenseNet-100-k12 (full)	0.9531	0.77	293.55	-
DenseNet100-k12 (t=3)	0.9352	0.34	224.90	56.27
DenseNet100-k12 (t=13)	0.9437	0.29	173.20	62.66

Table 1: The results of pruning various DNNs on CIFAR-10 data.

Model	Test Accuracy	Param. (M)	FLOPs (M)	Red.(%)
ResNet-164 (full)	0.7799	1.73	254.96	-
ResNet164	0.7459	0.94	130.97	45.30
DenseNet-100-k12 (full)	0.7793	0.80	304.10	-
DenseNet100-k12	0.7408	0.38	203.35	52.37

Table 2: The results of pruning various DNNs on CIFAR-100 data.