25th INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION

Pose Variation Adaptation for Person Re-identification

Lei Zhang¹, Na Jiang², YueXu¹, Qishuai Diao¹, Zhong Zhou¹, Wei Wu¹

¹ State Key Laboratory of Virtual Reality Technology and Systems, Beihang University

² Information Engineering College, Capital Normal University

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Background

Person Re-identification

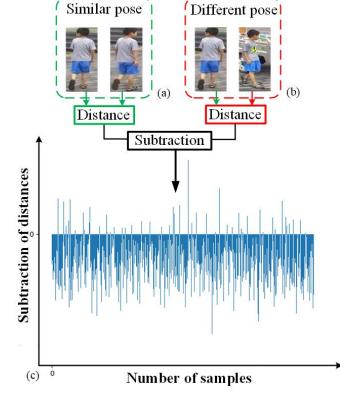
Definition

A retrieval task that aims to recognize and identify a pedestrian across multiple camera views at different times.

Application

Human retrieval, human tracking and activity analysis.

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

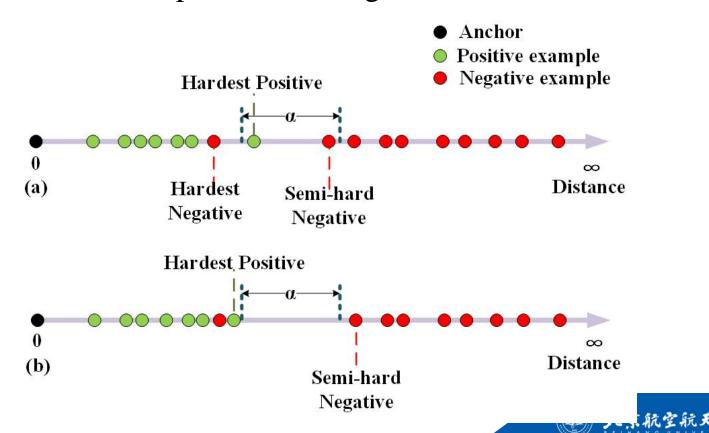


Problem Statement

Generate samples for data augmentation

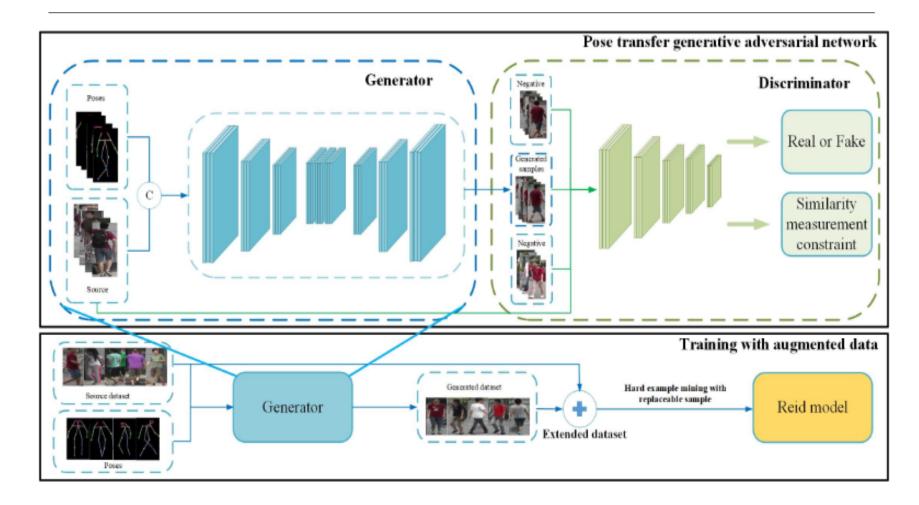
■ Two images from the same person with similar poses appear more similar than the same person in quite different

poses.

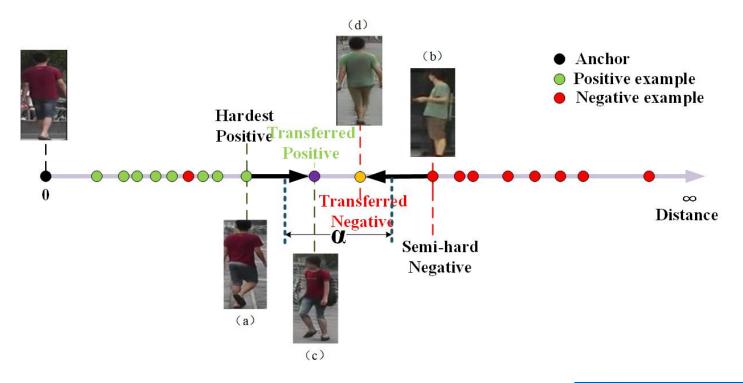


Problem Statement

- Triplet Selection
 - Inferior examples for training



- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

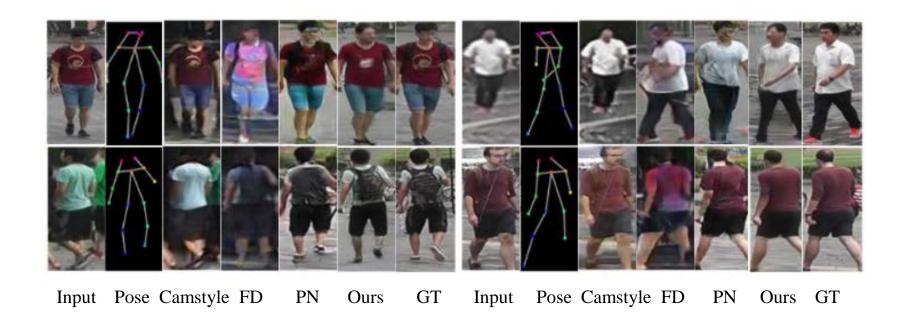

Our Solutions

Our Solutions

- Hard example mining with replaceable sample
 - Optimize the manner of samples used

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Experiments


- Datasets:
 - DukeMTMC-reID
 - Market-1501

- Baseline:
 - A strong baseline:[CVPRW2019]
 - □ IDE:[CVPR2018]
 - □ PN-GAN:[ECCV2018]

Experiments

Comparison of the generated images and real images on Market-1501 across the different methods including Camstyle, FD-net, PNGAN, and our approaches

Experiments

Methods	Market-1501		DukeMTMC-reID	
	Rank-1	mAP	Rank-1	mAP
BoW+kissme [2]	44.4	20.8	25.1	12.1
XQDA [3]	-	-	30.8	17.0
DNS [5]	55.4	29.9	_	-
Gated [16]	65.9	39.6	-	-
IDE [1]	72.5	46.0	65.2	45.0
SVDNet [17]	82.3	62.1	76.7	56.8
TriNet [31]	84.9	69.1	72.4	53.5
Part-aligned [32]	91.7	79.6	84.4	69.3
VPM [19]	93.0	80.8	83.6	72.6
Mance [33]	93.1	82.3	84.9	71.8
M^{3} [34]	95.4	82.6	84.7	68.5
LSRO(w/o) [8]	84.0	66.1	67.7	47.1
PT(w/o) [12]	87.7	68.9	78.5	56.9
PN-GAN(w/o) [26]	89.4	72.6	73.6	53.2
Camstyle(w/o) [11]	89.5	71.6	78.3	57.6
FD- $GAN(w/o)$ [35]	90.5	77.7	80.0	64.5
DG-net(w/o) [25]	94.8	86.0	86.6	74.8
Base1(w/o) [30]	94.1	85.7	86.2	75.9
Ours	95.7	88.0	89.9	78.2
DG-net(w/) [25]	95.4	92.5	90.3	88.3
Base1(w/) [30]	95.4	94.2	90.3	89.1
Auto- $\hat{R}e\hat{ID}(w/)$ [36]	95.4	94.2	91.4	89.2
Ours+re-ranking	96.1	94.5	92.0	89.3

Comparison with state-ofthe-art on Market-1501 and DukeMTMC-reID

- Background and Motivation
- Problem Statement
- Our Solutions
- Experiments
- Conclusion

Conclusion

 Introduce a pose transfer generative adversarial network to synthesize images for data augmentation


 Propose hard example mining with replaceable sample to optimize the manner of the pose-transferred sample usage

Experimental results show that our approach outperforms or shows comparable results to the existing best perform methods on both datasets.

Q & A

Thank You