

Paper ID: 1948

Towards Robust Learning with Different Label Noise Distributions

Diego Ortego, Eric Arazo, Paul Albert, Noel E. O'Connor and Kevin McGuinness

Code on github https://git.io/JJ0PV

Exploiting large data collections

- DNN training with more data \rightarrow Better results
- Labeling large data collections is expensive
- Possible solution: collect web images and infer the labels from the metadata

Label noise

Studied in a controlled manner by flipping labels to incorrect classes (synthetic in-distribution (ID) noise)

Methods designed to perform label correction

Label noise

Studied in a controlled manner by flipping labels to incorrect classes (synthetic in-distribution (ID) noise)

Methods designed to perform label correction

But, in real-world noise... (WebVision [1] examples)

Out-of-distribution (OOD) noise highly present

Important to consider different noise types

Impact of label noise distribution

Small loss trick (low loss=clean) often used is **not straightforward** to apply for all **noise distributions**

Label noise **Distribution Robust Pseudo-Labeling** (DRPL):1) Label noise detection.2) Semi-supervised learning (SSL)

Label noise **Distribution Robust Pseudo-Labeling** (DRPL):1) Label noise detection.2) Semi-supervised learning (SSL)

Pre-train with high learning rate to learn clean data pattern without memorizing label noise

Label noise **Distribution Robust Pseudo-Labeling** (DRPL):1) Label noise detection.2) Semi-supervised learning (SSL)

Relabel all samples with network predictions [2]. This stage is key to reveal a discriminative measure for noise detection.

Label noise **Distribution Robust Pseudo-Labeling** (DRPL):1) Label noise detection.2) Semi-supervised learning (SSL)

Noise detection based on fitting a Beta mixture model [3] to the discriminative measure and thresholding the posterior distribution

Label noise **Distribution Robust Pseudo-Labeling** (DRPL):1) Label noise detection.2) Semi-supervised learning (SSL)

SSL using [4] where clean=labeled and noisy=unlabeled Repeat noise detection to refine the clean and noisy sets

Label noise **Distribution Robust Pseudo-Labeling** (DRPL):1) Label noise detection.2) Semi-supervised learning (SSL)

Final SSL [4] training with the refined clean/noisy sets

[4] Arazo et al. <u>Pseudo-Labeling and Confirmation Bias in Deep Semi-Supervised Learning</u>. IJCNN 2020 ¹¹

Discriminative measure during relabeling

Cross-entropy (CE) between current predictions and old labels

Disagreement between the new and old noise patterns

Clean (Low CE) Keep the same labels in both patterns **Noisy (High CE)** Exhibit different labels in both patterns

Evaluation (ImageNet32/64, CIFAR-10/100, mini-WebVision)

Uniform (U) and non-uniform (NU) for ID and OOD noise

	ImageNet32								ImageNet64							
	NU-ID		U-ID		NU-OOD		U-OOD		NU-ID		U-ID		NU-OOD		U-OOD	
	30%	50%	40%	80%	30%	50%	40%	80%	30%	50%	40%	80%	30%	50%	40%	80%
FW [24] R [14] M [40] DB [16]	54.22 67.24 67.14 62.88	43.38 63.62 51.96 52.20	52.06 62.98 61.98 67.62	31.20 41.52 38.92 45.34	62.14 66.36 66.14 64.86	55.06 62.80 60.62 60.58	56.32 64.04 64.66 65.96	40.08 45.00 47.40 39.30	60.10 74.28 74.02 71.30	46.06 69.20 58.14 60.98	57.42 70.98 69.90 74.56	37.84 48.44 49.22 56.44	69.86 74.22 74.78 77.94	63.38 70.74 69.40 70.38	63.08 72.78 73.94 74.08	47.68 54.00 59.54 50.98
DRPL	73.46	68.18	73.48	61.78	71.38	67.32	71.36	54.10	81.90	77.66	81.50	73.08	80.44	76.38	79.76	64.34

mini-WebVision

	CE	FW [24]	R [14]	M [40]	GCE [35]	DB [16]	DMI [17]	P [15]	DM [38]	DRPL
1	73.88	74.68	76.52	80.76	74.28	79.68	73.96	79.96	78.16	82.08

✔ Consistent across noise levels, distributions, and image resolutions

Real-world (RW) vs synthetic (SY)

Take home message:

Most SY noises are different from RW noise RW noise contains OOD samples OOD samples should be treated differently (mixup success)

Representation learning

ImageNet64

- M: Mixup, O: Ours (DRPL)
- Linear model evaluation for features at different depths
- Degradation concentrates at the end

Take home message: Even if label noise is memorized, discriminative low-level and mid-level features emerge

Where DNNs look for memorizing?

Activation maps

Noisy label: Keyboard

True label: Theater curtain

Activation mapActivation mapcurtain classkeyboard class(not predicted)(predicted)

Take home message: DNNs skip relevant areas for the true class, while focusing on areas that help explaining the noisy label

Conclusions

- DRPL: robust image classification models in the presence of label noise
- Robustness comes from an effective label noise detection for different noise distributions
- We analyze different label noise distributions from multiple perspectives (similarities with RW noise, representation learning, attention maps...) leading to important conclusions that help in better understanding label noise effect

Thank you!

Q/A?