

Recognizing Multiple Text Sequences from an Image by Pure End-To-End Learning

Zhenlong Xu¹ Shuigeng Zhou¹ Fan Bai¹
Zhanzhan Cheng² Yi Niu² Shiliang Pu²

¹Shanghai Key Lab of Intelligent Information Processing, and School of Computer Science, Fudan University, Shanghai 200433, China

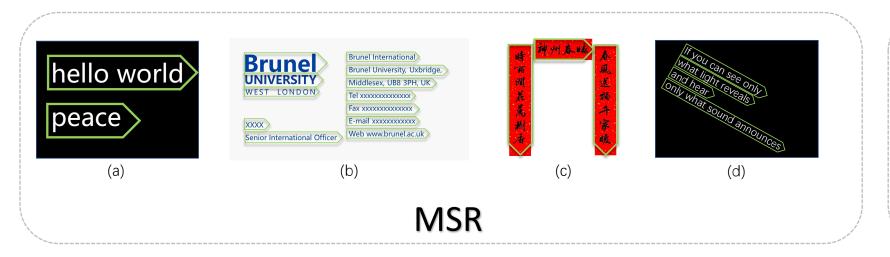
²Hikvision Research Institute, China

OUTLINE

- Motivation
- Method
- Experiments
- Conclusion

Motivation

Problem: Recognizing multiple text sequences from an image by pure end-to-end learning.



Annotations:

only text; no location;

PEE

Method	Architecture	Annotations
NEE	Separate D/R	T+G
QEE	Joint D-R	T+G
PEE	R	T

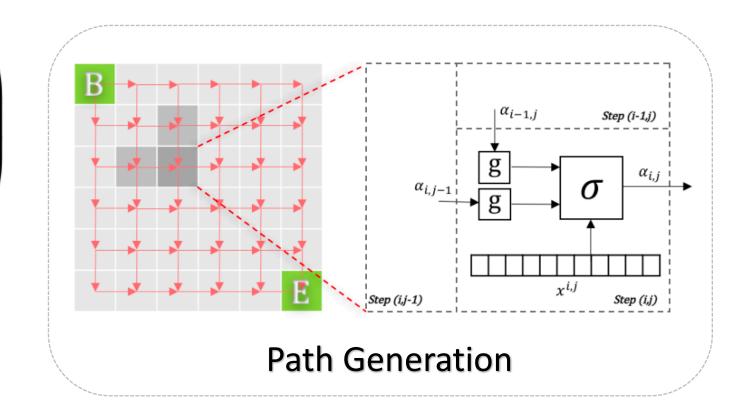
Problem	Method	Typical works
MSR	NEE	[5], [6], [7], [8]
MSR	QEE	[9], [10], [11], [?], [13]
SSR	PEE	[12], [14]
MSR	PEE	Ours

Method

Aims: transform a three-dimensional tensor X to a conditional probability distribution over multiple character sequences P(Z|X).

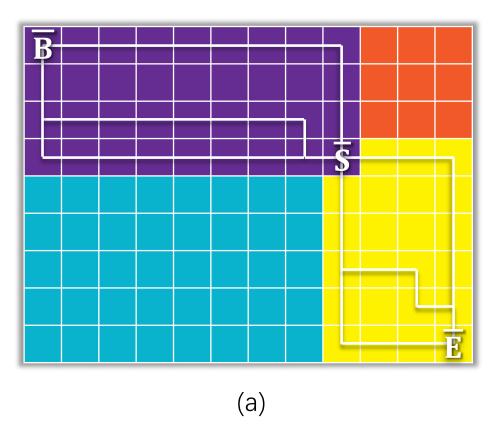
$$\mathbf{X} = \left(egin{array}{ccccc} x^{00} & x^{01} & \dots & x^{0W'} \ x^{10} & x^{11} & \dots & x^{1W'} \ dots & dots & \ddots & dots \ x^{H'0} & x^{H'1} & \dots & x^{H'W'} \end{array}
ight)$$

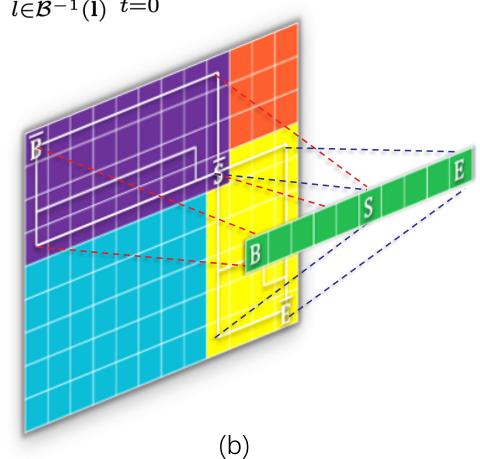
$$p(\mathbf{Z}|\mathbf{X}) \stackrel{def}{=} \frac{1}{N} \sum_{i=1}^{N} p(\mathbf{l}_i|\mathbf{X})$$



Method

Path search problem:
$$p(\mathbf{l}|\mathbf{X}) = \sum_{ar{l} \in \mathcal{B}^{-1}(\mathbf{l})} p(ar{l}|\mathbf{X}) = \sum_{ar{l} \in \mathcal{B}^{-1}(\mathbf{l})} \prod_{t=0}^{|ar{l}|-1} x_{ar{l}_t}^{i_t,j_t}$$





Method-Forward

$$lpha_{i,j}(s) \stackrel{def}{=} \sum_{ar{l} \in \mathcal{B}^{-1}(\mathbf{l}'_{0:s})} \prod_{t=0}^{|l|-1} x^{i_t,j_t}_{ar{l}_t}$$

Define $\alpha_{i,j}(s)$ as the probability for \bar{l} matching $l'_{0:s}$ at (i, j).

$$\alpha_{i,j}(s) = \sigma(g(\alpha_{i,j-1}, s), g(\alpha_{i-1,j}, s))$$
$$= \lambda_1 g(\alpha_{i,j-1}, s) + \lambda_2 g(\alpha_{i-1,j}, s)$$

 λ_1, λ_2 are the hyper-parameters of linear function σ .

$$g(\alpha_{i,j},s) \stackrel{def}{=} (\alpha_{i,j}(s) + \alpha_{i,j}(s-1) + \eta \alpha_{i,j}(s-2)) x_{l_{s}}^{i,j}$$

$$\eta = egin{cases} 0 & \text{if } \mathbf{l}_s' = \text{blank or } \mathbf{l}_s' = \mathbf{l}_{s-2}', \\ 1 & \text{otherwise.} \end{cases}$$

The state transfer strategy:

- blank and any non-blank character
- > any pair of distinct non-blank characters

$$p(\mathbf{l}|\mathbf{X}) = \alpha_{H',W'}(|\mathbf{l}'| - 1) + \alpha_{H',W'}(|\mathbf{l}'| - 2)$$

Answer Representation

Method-Backward

$$eta_{i,j}(s) \stackrel{def}{=} \sum_{ar{l} \in \mathcal{B}^{-1}(\mathbf{l}_{s:|\mathbf{l}'|-1}')} \prod_{t=1}^{|ar{l}|-1} x_{ar{l}_t}^{i_t,j_t}$$

Define $\beta_{i,j}(s)$ as the probability for \overline{l} matching $l'_{s:|l'|-1}$ at (i,j) but not relying on $x_{\overline{l}_0}^{i_0,j_0}$

$$\beta_{i,j}(s) = \lambda_1 g'(\beta_{i,j+1}, s) + \lambda_2 g'(\beta_{i+1,j}, s)$$

$$g'(\beta_{i,j},s) \stackrel{def}{=} \beta_{i,j}(s) x_{\mathbf{l}'_s}^{i,j} + \beta_{i,j}(s+1) x_{\mathbf{l}'_{s+1}}^{i,j} + \eta' \beta_{i,j}(s+2) x_{\mathbf{l}'_{s+2}}^{i,j}$$

$$\eta' = egin{cases} 0 & ext{if } \mathbf{l}_s' = ext{blank or } \mathbf{l}_s' = \mathbf{l}_{s+2}', \\ 1 & ext{otherwise.} \end{cases}$$

The state transfer strategy:

- blank and any non-blank character
- > any pair of distinct non-blank characters

Method

Objective Function

$$O = -\sum_{(\mathbf{X}, \mathbf{Z}) \in \mathcal{S}} \ln p(\mathbf{Z}|\mathbf{X})$$

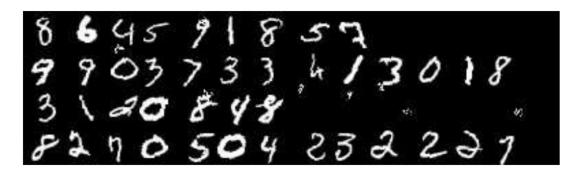
$$O = -\sum_{(\mathbf{X}, \mathbf{Z}) \in \mathcal{S}} (\ln \sum_{i=1}^{N} p(\mathbf{l}_i | \mathbf{X}) - \ln N)$$

$$\frac{\partial p(\mathbf{l}|\mathbf{X})}{\partial x_k^{i,j}} = \frac{1}{x_k^{i,j}} \sum_{s \in lab(\mathbf{l},k)} \alpha_{i,j}(s) \beta_{i,j}(s)$$

$$\frac{\partial O}{\partial x_k^{i,j}} = -\frac{1}{x_k^{i,j} \sum_{t=1}^n p(\mathbf{l}_t | \mathbf{X})} \sum_{t=1}^n \sum_{s \in lab(\mathbf{l}_t, k)} \alpha_{i,j}(s) \beta_{i,j}(s)$$

Experiments

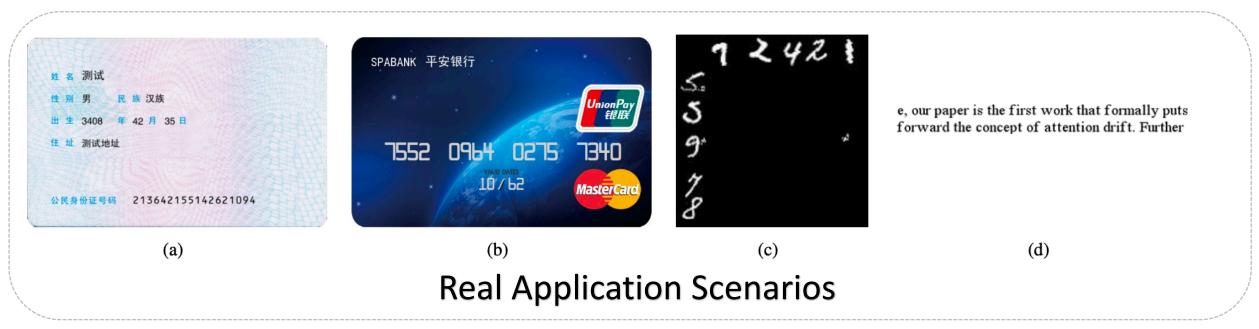
	MSRA		Attention baseline		CTC baseline				
	NED	SA	IA	NED	SA	IA	NED	SA	IA
MS-MNIST[1]	0.65	91.23	91.23	0.90	89.03	89.03	0.78	89.60	89.60
MS-MNIST[2]	0.48	93.57	87.47	0.67	91.48	83.87	-	-	-
MS-MNIST[3]	0.74	90.19	73.23	1.25	87.52	67.27	-	-	-
MS-MNIST[4]	1.21	86.35	63.20	1.35	88.55	61.80	-	-	-
MS-MNIST[5]	1.82	77.69	27.93	88.69	0	0	-	-	-



MS-MNIST

- ➤ NED(%): the normalized edit distance.
- > SA(%): the sequence recognition accuracy.
- > IA(%): the image recognition accuracy.

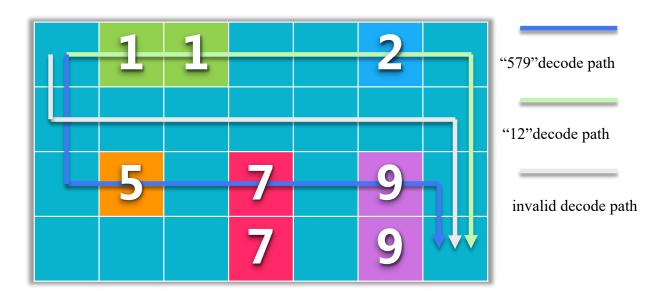
Experiments

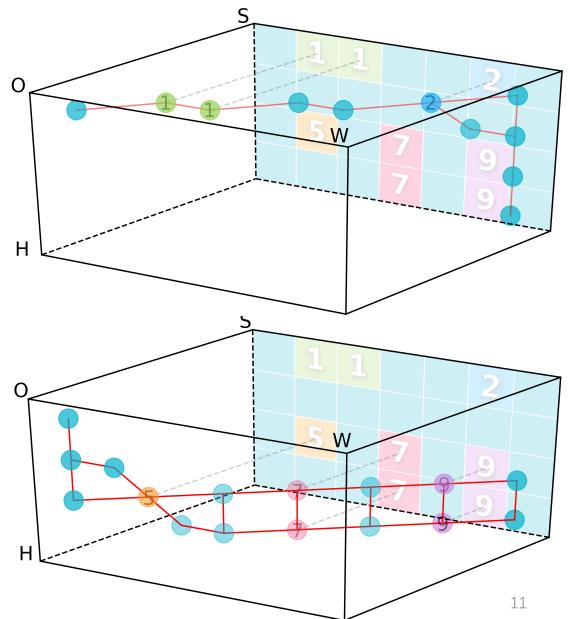


Datasets	NED	SA	IA
IDN	0.59	97.59	90.39
BCN	0.12	98.12	96.23
HV-MNIST	1.87	90.99	82.73
SET	1.48	68.57	47.90

Experiments

Decoding process demonstration





Conclusion

- A new taxonomy of text recognition methods: NEE, QEE, PEE;
- A novel PEE method MSRA to solve MSR;
- Build up several datasets: MS-MNIST and real application scenarios
- Conduct extensive experiments on these datasets which show MSRA can effectively recognize multiple sequences from images and outper- forms two CTC/attention based baseline methods.