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Intuition Multi-Scale Learning

Multi-Scale Learning

Existing CNN-based methods for pixel labeling heavily depend on multi-scale
features to meet the requirements of both semantic comprehension and detail
preservation.

(a)

(b)

Figure: (a) High-Resolution Network. (b) Pyramid Pooling Module.
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Intuition Scale Confusion

Scale Confusion

Figure: Visual comparison of the multi-scale features extracted by the encoder
of (i) HRNetV2-W48 and (ii) our proposed GSTO-HRNet. Each heat map is
obtained by averaging the corresponding feature map along the channel
dimension, and warmer color (red) indicates larger activation.
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Method Gated Scale-Transfer Operation

Traditional Scale-Transfer Operation

traditional transition is performed through down-sampling like average
pooling and up-sampling like bilinear interpolation.

F̃kij =

C∑
m=1

ωkm · Fmij , k = 1, ..., C ′, (1)

F ′ = ST (F̃ ), (2)
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Method Gated Scale-Transfer Operation

Gated Scale-Transfer Operation

In the proposed GSTOs, a spatially gated feature F g is produced first and
then Equations 1 and 2 are performed on F g instead of on the original F

F g
mij = gij · Fmij , m = 1, ..., C, (3)

(a) (b)
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Method Gated Scale-Transfer Operation

Gated Scale-Transfer Operation

unsupervised GSTO
The element of the gate gij is calculated from the original feature F , by an
1× 1 convolution with input channel of C and output channel of 1, followed
by sigmoid.

gij = σ(

C∑
m=1

ρm · Fmij) (4)
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Method Gated Scale-Transfer Operation

Gated Scale-Transfer Operation

supervised GSTO
A light-weight predictor, such as a 1× 1 convolution, is performed on F to get
P ∈ Rc0×H×W , where c0 is the number of semantic categories and P is
supervised by the ground truth during training process. Then we apply a
1× 1 convolution on P to get the spatial mask.

Pnij =

C∑
m=1

ω′nm · Fmij , n = 1, ..., c0, (5)

gij = σ(

c0∑
n=1

θn · Pnij), (6)
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Method Gated Scale-Transfer Operation

Gated Scale-Transfer Operation

supervised GSTO
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Method Multi-scale Backbone with GSTO

Multi-scale Backbone with GSTO

The recently proposed multi-scale backbone HRNet [3, 2] has shown
impressive results in pixel labeling tasks including semantic segmentation.
With our proposed GSTO, we build an advanced backbone named
GSTO-HRNet
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Figure: The pipeline of GSTO-HRNet, the GSTO-advanced multi-scale
backbone. The GFM and GTM are GSTO-based modules for multi-scale
feature fusion and generation, respectively.
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Method Multi-scale Modules with GSTO

Multi-scale Modules with GSTO

Traditional classification backbone can gain improvement by applying GSTO
to multi-scale aggregation modules like Pyramid Pooling Module (PPM) [4]
and Atrous Spatial Pyramid Pooling (ASPP) [1].
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Figure: GSTO-based Pyramid Pooling Module: an example to advance
multi-scale aggragation modules with the proposed GSTO. CBR represents
Conv+BN+ReLU.
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Experiments Comparison with Baseline

Results on GSTO-HRNet

Table: The increments of parameters and GFLOPs from HRNetV2 to our
GSTO-HRNet and the mIoU comparison on Cityscapes val.(single scale and
no flipping, not using OHEM during training).

Method Backbone #Param. incre. GFLOPs incre. mIoU

HRNetV2 HRNetV2-W18 3.92M
N0.67%

71.6
N3.9%

76.2/75.9(impl.)

Ours GSTO-HRNet-W18 3.95M 74.4 77.3(1.1/1.4 ↑)
HRNetV2 HRNetV2-W48 65.78M

N0.23%
696.2

N2.6%
80.9/80.2(impl.)

Ours GSTO-HRNet-W48 65.93M 714.0 82.1(1.2/1.9 ↑)
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Experiments Comparison with Baseline

Results on Multi-scale Modules with GSTO

Table: Improvement on multi-scale aggregation modules.

Method PPM ASPP

Baseline 76.5 74.9

Baseline(w/ sup) 76.9(0.4 ↑) 75.1(0.2 ↑)
Baseline+GSTO(w/o sup) 77.3(0.8 ↑) 76.3(1.4 ↑)
Baseline+GSTO(w/ sup) 77.8(1.3 ↑) 76.9(2.0 ↑)
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Experiments Comparison with State-of-the-art

Cityscapes

Table: Comparison with state-of-the-art segmentation results on Cityscapes
test.

Method Backbone mIoU iIoU cla. IoU cat. iIoU cat.

Model learned on the train set

PSPNet Dilated-ResNet-101 78.4 56.7 90.6 78.6

PSANet Dilated-ResNet-101 78.6 - - -

AAF Dilated-ResNet-101 79.1 - - -

HRNetV2 HRNetV2-W48 80.4 59.2 91.5 80.8

ACFNet ResNet-101 80.8 - - -

Our approach GSTO-HRNet-W48 81.8 62.3 92.1 81.7

Model learned on the train+valid set

DeepLab Dilated-ResNet-101 70.4 42.6 86.4 67.7

RefineNet ResNet-101 73.6 47.2 87.9 70.6

DFN ResNet-101 79.3 - - -

PSANet Dilated-ResNet-101 80.1 - - -

DenseASPP WDenseNet-161 80.6 59.1 90.9 78.1

SPGNet 2×ResNet-50 81.1 - - -

HRNetV2 HRNetV2-W48 81.6 61.8 92.1 82.2

ACFNet ResNet-101 81.8 - - -

Our approach GSTO-HRNet-W48 82.4 63.8 92.4 83.3
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Experiments Comparison with State-of-the-art

LIP

Table: Semantic segmentation results on LIP. N denotes not using any extra
information, e.g., pose or edge.

Method Backbone Extra. Pixel acc. Avg. acc. mIoU

Attention+SSL VGG16 Pose 84.36 54.94 44.73

DeepLabV3+ Dilated-ResNet-101 - 84.09 55.62 44.80

MMAN Dilated-ResNet-101 - - - 46.81

SS-NAN ResNet-101 Pose 87.59 56.03 47.92

MuLA Hourglass Pose 88.50 60.50 49.30

JPPNet Dilated-ResNet-101 Pose 86.39 62.32 51.37

CE2P Dilated-ResNet-101 Edge 87.37 63.20 53.10

HRNetV2 HRNetV2-W48 N 88.21 67.43 55.90

Our approach GSTO-HRNet-W48 N 88.38 68.36 57.37
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Experiments Comparison with State-of-the-art

Pascal Context

Table: Semantic segmentation results on PASCAL-context. The methods are
evaluated on 59 classes and 60 classes.

Method Backbone mIoU (59 classes) mIoU (60 classes)

FCN-8s VGG-16 - 35.1

BoxSup - - 40.5

DeepLab-v2 Dilated-ResNet-101 - 45.7

RefineNet ResNet-152 - 47.3

PSPNet Dilated-ResNet-101 47.8 -

Ding et al. ResNet-101 51.6 -

EncNet Dilated-ResNet-101 52.6 -

HRNetV2 HRNetV2-W48 54.0 48.3

Our approach GSTO-HRNet-W48 54.3 48.5
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Visualization

Visualization
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