

Interpretable Structured Learning with Sparse Gated Sequence Encoder for Protein-Protein Interaction Prediction

Kishan KC, Feng Cui, Anne Haake, Rui Li

Lab of Use-Inspired Computational Intelligence Golisano College of Computing and Information Sciences Rochester Institute of Technology (RIT), New York, USA

Background

 \geq Proteins rarely act alone as their functions tend to be regulated.

- ➢ Numerous proteins organized by their interactions forms molecular machines that carries out biological and molecular processes.
- \succ Study of these interactions:
 - $\circ~$ Understand biological phenomenon.
 - Insights about molecular etiology of diseases.
 - Discovery of putative drug targets.

Problem

➢ Goal: Predict the interaction between proteins from sequences

Proposed Method

- ➢ We propose interpretable deep framework, to model PPIs using variable length sequences that
 - Provides interpretable sparsity masks.
 - is computationally efficient and scalable.
 - Makes accurate PPI predictions.

Sequence Encoder

- \succ Handles variable-length sequences.
- > Embedding layer projects one hot encoding a_l to vector x_l :

$$x_l = \mathbf{W}_{\mathrm{e}} a_l$$

Bidirectional GRU to learn sequential & contextualized representation of amino acids in the sequences.

$$h_l = \text{BiGRU}(x_l) = [\overrightarrow{\text{GRU}(x_l)}, \overleftarrow{\text{GRU}(x_l)}]$$

where $\overline{\text{GRU}(x_l)}$ is the forward encoding process from position 1 to L and $\overline{\text{GRU}(x_l)}$ is the backward encoding process from position L to 1.

Sparse Importance Gate

- \succ Not all amino acids are informative for interactions.
- ➤ Learn sparse mask to focus only on subsets of important amino acids.
- \succ Convert h_l to score p_l :

 $p_l = MLP(h_l)$

softmax(p)	sparsemax(p)	fusedmax(p)
• Full support	• Sparse but distributed	• Sparse and contiguous
$\frac{\exp(\mathbf{p}_i)}{\sum_j \exp(p_j)}$	$\operatorname{argmin}_{\{\mathbf{g} \in \Delta^K\}} \mathbf{g} - \mathbf{p} _2^2$	$\left \operatorname{argmin}_{\{\mathbf{g} \in \Delta^{K}\}} \frac{1}{2} \left \mathbf{g} - \frac{\mathbf{p}}{\gamma} \right _{2}^{2} + \lambda \sum_{j=1}^{L-1} \left \mathbf{g}_{j+1} - \mathbf{g}_{j} \right \right $

Gaussian Representation

- Proteins interacts with various proteins having diverse functions and different sequence patterns.
- \triangleright Such diverse information can be reflected in the uncertainty of the representation.
- > Protein sequence **s** is encoded to *d*-dimensional Gaussian distribution $\mathcal{N}(\mu, \Sigma)$.

Pairwise Ranking Loss

- ➢ Minimize the statistical distance E_{ij} between interacting proteins while maximizing the distance for non-interacting proteins $E_{ij (interacting)} < E_{ik (non-interacting)}$
- ➢ Wasserstein distance between Gaussian representation of sequences:

$$E_{ij} = \text{Wasserstein distance}\left(\mathcal{N}(\mu_i, \Sigma_i), \mathcal{N}(\mu_j, \Sigma_j)\right) = \left|\mu_i - \mu_j\right|_2^2 + \left|\Sigma_i^{\frac{1}{2}} - \Sigma_j^{\frac{1}{2}}\right|_F^2$$

 \succ Employ square-exponential loss to learn from known interactions

$$\mathcal{L} = \sum_{i} \sum_{(i,j)\in\mathbf{Y}^+} \sum_{(i,k)\in\mathbf{Y}^-} \left(E_{ij}^2 + \exp(-E_{ik}) \right)$$

Results

\succ Datasets

Data	No. of proteins	No. of positive pairs	No. of negative pairs
Yeast	3,651	50,344	50,376
Human	7,028	73,624	73,628

Table: Datasets used for PPI prediction

 \succ Our proposed method performs better than state-of-the-art methods.

Method	Classifier	Yeast		Human	
Wiethod	Classifici	AUROC	AP	AUROC	AP
Our method (sparsemax)	Ranking	0.901 ± 0.002	0.904 ± 0.002	$0.881 {\pm} 0.002$	0.889±0.001
Our methou (sparsemax)	Random Forest	0.924±0.002 *	0.925±0.001 *	$0.887{\pm}0.002^*$	0.894±0.001 *
Our method (fusedmax)	Ranking	0.898 ± 0.001	0.900±0.002	0.874 ± 0.002	0.883 ± 0.001
Our method (Iuseumax)	Random Forest	$0.919 {\pm} 0.003$	$0.921 {\pm} 0.002$	$0.881 {\pm} 0.002$	$0.886 {\pm} 0.001$
DPPI		0.891 ± 0.004	0.857±0.007	0.870 ± 0.004	0.835 ± 0.005
PIPR		$0.909 {\pm} 0.003$	0.912 ± 0.004	$0.878 {\pm} 0.002$	$0.882 {\pm} 0.003$

Table: Average AUROC and AP scores for PPI prediction

Ablation study

Does sparsity gating mechanism improve the performance on interaction prediction?

Model configuration		AUROC	AP
No gating		$0.880 {\pm} 0.001$	$0.875 {\pm} 0.003$
	Softmax –	0.881 ± 0.001	0.877 ± 0.001
Point + RF	Fusedmax	$0.909 {\pm} 0.001$	$0.912 {\pm} 0.002$
	Sparsemax	$0.913 {\pm} 0.001$	$0.916 {\pm} 0.002$
	- Softmax -	0.882 ± 0.001	0.879 ± 0.002
Gaussian + RF	Fusedmax	$0.919 {\pm} 0.003$	$0.921 {\pm} 0.001$
	Sparsemax	$0.924{\pm}0.002$	$0.925{\pm}0.001$

Table: Study of sparse gates on Yeast datasets

Evaluating sparse gates

> Does learned sparsity mask match biological knowledge?

Dataset	Selected amino acids (%)	Alignment with motifs (%)
Yeast	19.24	59.05
Human	23.33	65.63

Interpretability

Efficiency

- Encode all sequences to their representation and optimize based on known interactions
- Other methods (DPPI, PIPR) encodes pairs of sequences and is not scalable to large number of interactions.

Conclusion

- ➢ We propose deep framework to model and predict PPIs using variable length sequences
 - is computationally efficient and scalable.
 - Makes accurate PPI predictions.
 - Learns sparse masks to provide interpretability.

Acknowledgements

Funding

Thanks