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Background

» Proteins rarely act alone as their functions tend to be regulated.

» Numerous proteins organized by their interactions forms molecular
machines that carries out biological and molecular processes.

» Study of these interactions:
o Understand biological phenomenon.
o Insights about molecular etiology of diseases.

o Discovery of putative drug targets.



Problem

» Goal: Predict the interaction between proteins from sequences
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Proposed Method

» We propose interpretable deep framework, to model PPIs using variable length
sequences that

Pairwise ranking loss

* Provides interpretable sparsity masks. 4
| | Vi
= is computationally efficient and scalable. f ’_,é i
[ F'Qgil Doty ['qu |
= Makes accurate PPI predictions. mportance eate
% —* %
| Bi-GRU ]
* 0 4
A s
M G F
*
Mini-batch training tuples
1. MKRSYKTLPTYFFSFF.... (1,2,4)
2. MRHQYYQPQPMYY... (2,3,-)

3. MTGFKVSSFFYILALS... (1,3,-)




Sequence Encoder

» Handles variable-length sequences.

» Embedding layer projects one hot encoding a;to vector x;:
x; = Weqy

» Bidirectional GRU to learn sequential & contextualized representation
of amino acids in the sequences.

h, = BiGRU(x,) = [GRU(x,), GRU(x;)]

where GRU(xl)> is the forward encoding process from position 1 to L and
GRU(x;) is the backward encoding process from position L to 1.




Sparse Importance Gate

> Not all amino acids are informative for interactions.

» Learn sparse mask to focus only on subsets of
important amino acids. e

» Convert h; to score pj:
pi = MLP(h;)

softmax(p) sparsemax(p) fusedmax(p)
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(Gaussian Representation

» Proteins interacts with various proteins having diverse functions and
ditferent sequence patterns.

» Such diverse information can be reflected in the uncertainty of the
representation.

» Protein sequence s is encoded to d-dimensional Gaussian distribution
N(u,Z).



Pairwise Ranking Loss

» Minimize the statistical distance E;; between interacting proteins while
maximizing the distance for non-interacting proteins

Ei j (interacting) < Eik (non—interacting)

» Wasserstein distance between (Gaussian representation of sequences:
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E;; = Wasserstein distance (]\f(,ui, Zi),]\f(ﬂj» 2:j)) = ‘“i —Hj F

» Employ square-exponential loss to learn from known interactions

L= 2 2 Z (ELZJ + exp(—Eik))
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Results

> Datasets
No. of No. of No. of
Data ) .. ) ) )
proteins  positive pairs negative pairs
Yeast 3,651 50,344 50,376
Human 7,028 73,624 73,628

Table: Datasets used for PPl prediction

» QOur proposed method performs better than state-of-the-art methods.

Method Classifier Yeast Human
AUROC AP AUROC AP
Our method (sparsemax) Ranking 0.901+0.002 0.904+0.002 0.881+0.002 0.889+0.001
Random Forest  0.9244-0.002*  0.9254+0.001* 0.88710.002*  0.894+0.001*
' ;)u_r :ne_th_o d_ (tfus_e d_m;x; ~ Ranking  0.898+0.001  0.900+0.002  0.874+0.002  0.883+0.001
Random Forest 0.919+0.003 0.921+0.002 0.881+0.002 0.886+0.001
"DPPL  0.8914+0.004  0.857+0.007  0.870+0.004  0.835+0.005
PIPR 0.909+0.003 0.912+0.004 0.878+0.002 0.882+0.003

Table: Average AUROC and AP scores for PPI prediction



Ablation study

» Does sparsity gating mechanism improve the performance on

interaction prediction?

Model configuration AUROC AP
No gating 0.8804+0.001 0.8754:0.003
~ Softmax  0.8814+0.001 0.87740.001
Point + RF Fusedmax  0.909+0.001 0.912+0.002
Sparsemax  0.913+0.001 0.916+0.002
~ Softmax  0.8824+0.001 0.87940.002
Gaussian + RF  Fusedmax  0.91940.003 0.92140.001
Sparsemax  0.924+0.002 0.925+0.001

Table: Study of sparse gates on Yeast datasets
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Evaluating sparse gates

» Does learned sparsity mask match biological knowledge?

Dataset Selected Alignment
amino acids (%)  with motifs (%)
Yeast 19.24 59.05
Human 23.33 65.63
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Interpretability

> Visualization

I Model's prediction
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Efficiency

» Encode all sequences to their

400

representation and optimize based
on known interactions
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encodes pairs of sequences and is not
scalable to large number of
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Conclusion

» We propose deep framework to model and predict PPIs using variable length
sequences

" is computationally efficient and scalable.
= Makes accurate PPI predictions.

" Learns sparse masks to provide interpretability.
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