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Background
ØProteins rarely act alone as their functions tend to be regulated.

ØNumerous proteins organized by their interactions forms molecular 
machines that carries out biological and molecular processes.

Ø Study of these interactions:

o Understand biological phenomenon.

o Insights about molecular etiology of diseases.

o Discovery of putative drug targets.
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Ø Goal: Predict the interaction between proteins from sequences

Ø Challenges
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Proposed Method 
Ø We propose interpretable deep framework, to model PPIs using variable length 

sequences that 

§ Provides interpretable sparsity masks.

§ is computationally efficient and scalable.

§ Makes accurate PPI predictions.
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Sequence Encoder
Ø Handles variable-length sequences.
Ø Embedding layer projects one hot encoding 𝑎!to vector 𝑥!:

𝑥! = 𝐖"𝑎!
Ø Bidirectional GRU to learn sequential & contextualized representation

of amino acids in the sequences.

ℎ! = BiGRU 𝑥! = [GRU 𝑥! , GRU(𝑥!)]

where GRU 𝑥! is the forward encoding process from position 1 to 𝐿 and
GRU(𝑥!) is the backward encoding process from position 𝐿 to 1.
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Sparse Importance Gate 
Ø Not all amino acids are informative for interactions.
Ø Learn sparse mask to focus only on subsets of

important amino acids.
Ø Convert ℎ! to score 𝑝!:

𝑝! = MLP(ℎ!)

softmax 𝐩 sparsemax 𝐩 fusedmax 𝐩

• Full support • Sparse but distributed • Sparse and contiguous
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Gaussian Representation
Ø Proteins interacts with various proteins having diverse functions and

different sequence patterns.

Ø Such diverse information can be reflected in the uncertainty of the
representation.

Ø Protein sequence 𝐬 is encoded to 𝑑-dimensional Gaussian distribution
𝒩 𝜇, Σ .
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Pairwise Ranking Loss
Ø Minimize the statistical distance 𝐸!" between interacting proteins while
maximizing the distance for non-interacting proteins

𝐸!" (!$%&'()%!$*) < 𝐸!, ($-$.!$%&'()%!$*)

Ø Wasserstein distance between Gaussian representation of sequences:

𝐸!" = Wasserstein distance 𝒩 𝜇! , Σ! ,𝒩 𝜇" , Σ" = 𝜇! − 𝜇" /
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Ø Employ square-exponential loss to learn from known interactions
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Results

Ø Our proposed method performs better than state-of-the-art methods.

Table: Average AUROC and AP scores for PPI prediction

Ø Datasets

Table: Datasets used for PPI prediction
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Ablation study
Ø Does sparsity gating mechanism improve the performance on 

interaction prediction?

Table: Study of sparse gates on Yeast datasets
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Evaluating sparse gates
Ø Does learned sparsity mask match biological knowledge?
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Interpretability
Ø Visualization

LSM8

RPC11
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Efficiency

Ø Encode all sequences to their 
representation and optimize based 
on known interactions

Ø Other methods (DPPI, PIPR) 
encodes pairs of sequences and is not 
scalable  to large number of 
interactions.
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Conclusion

Ø We propose deep framework to model and predict PPIs using variable length 
sequences
§ is computationally efficient and scalable.
§ Makes accurate PPI predictions.
§ Learns sparse masks to provide interpretability.



Acknowledgements

15

Funding



Thanks


