Unveiling Groups of Related Tasks in Multi-Task Learning

Jordan Frecon¹, Saverio Salzo¹, Massimiliano Pontil^{1,2}

- ¹ CSML Istituto Italiano di Tecnologia
- ² Dept of Computer Science University College London

25th International Conference on Pattern Recognition, Milan, Italy

Multi-task learning

Setting: T linear regression tasks

find
$$w_1$$
 find w_2 find w_3 find w_4 find w_5 find w_6 \cdots find w_T $y_1 \approx X_1w_1$ $y_2 \approx X_2w_2$ $y_3 \approx X_3w_3$ $y_4 \approx X_4w_4$ $y_5 \approx X_5w_5$ $y_6 \approx X_6w_6$ \cdots $y_T \approx X_Tw_T$
$$W = [w_1 \cdots w_T]$$
 low-rank

$$\hat{W} \in \underset{W = [w_1 \cdots w_T]}{\operatorname{argmin}} \sum_{t=1}^T \frac{1}{2} \|y_t - X_t w_t\|^2 + \lambda \|W\|_{\operatorname{tr}}$$

Multi-task learning

Setting: T linear regression tasks arranged in L groups of related tasks $\{\mathcal{G}_1,\ldots,\mathcal{G}_L\}$

find
$$w_1$$
 find w_2 find w_3 find w_4 find w_5 find w_6 \cdots find w_T

$$y_1 \approx X_1 w_1 \quad y_2 \approx X_2 w_2 \quad y_3 \approx X_3 w_3 \quad y_4 \approx X_4 w_4 \quad y_5 \approx X_5 w_5 \quad y_6 \approx X_6 w_6 \quad \cdots \quad y_T \approx X_T w_T$$

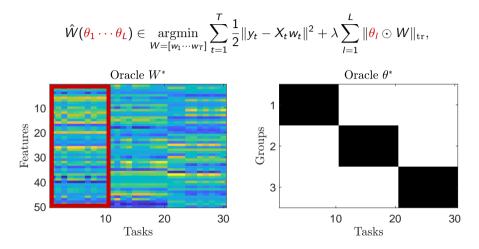
$$W_{\mathcal{G}_1} = [w_1 w_2] \quad W_{\mathcal{G}_2} = [w_3 w_4 w_5] \quad W_{\mathcal{G}_3} = [w_6 \cdots w_T]$$

$$low-rank \quad low-rank$$

$$\hat{W} \in \underset{W = [w_1 \cdots w_T]}{\operatorname{argmin}} \sum_{t=1}^T \frac{1}{2} \|y_t - X_t w_t\|^2 + \lambda \sum_{l=1}^L \|W_{\mathcal{G}_l}\|_{\operatorname{tr}}$$

Issue: In practice we don't know how tasks are related \rightarrow need to estimate $\{\mathcal{G}_1,\ldots,\mathcal{G}_L\}$

Parametrization of related tasks



Goal: Estimation of the optimal group-structure θ^*

A Bilevel Programming Approach

Upper-level Problem:

Lower-level Problem:

Difficulties:

- $\hat{W}(\theta)$ not available in closed form
- $\theta \mapsto \hat{W}(\theta)$ is nonsmooth $[\Rightarrow \mathcal{U}$ is nonsmooth]

Approximate Bilevel Problem

Upper-level Problem:

Dual Algorithm:

Goals:

- Find \mathcal{A} and \mathcal{B} smooth $[\Rightarrow w^{(K)}$ is smooth $\Rightarrow \mathcal{U}_K$ is smooth]
- Prove that the approximate bilevel scheme converges

Contributions

- Bilevel framework for finding groups of related tasks
- Design of a dual forward-backward algorithm with Bregman distances such that
 - lacktriangledown \mathcal{A} and \mathcal{B} are smooth $\Rightarrow \mathcal{U}_K$ is smooth
 - $\text{@} \begin{cases} \min \, \mathcal{U}_K \to \min \, \mathcal{U} \\ \operatorname{argmin} \, \mathcal{U}_K \to \operatorname{argmin} \, \mathcal{U} \end{cases}$

Implementation of a projected gradient descent algorithm (and some variants)

$$\theta^{(q+1)} = \mathcal{P}_{\Theta}(\theta^{(q)} - \gamma \nabla \mathcal{U}_{K}(\theta^{(q)}))$$

Technicality: \mathcal{U}_K involves generalized matrix functions \to computing $\nabla \mathcal{U}_K$ requires attention

Numerical Experiment

Setting: T = 30 tasks arranged of 3 groups made of 10 tasks each.

N=10 noisy observations and P=20 features per task.

ightarrow Estimate and group the features into, at most, L=6 groups.

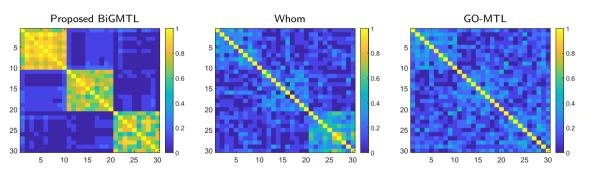


Figure 1: Mean group covariance matrix $\theta^{\top}\theta$ on the synthetic experiment. Only the proposed method manages to clearly estimate the three groups of tasks.

Conclusion

Thank You

A Matlab toolbox will be available at https://github.com/jordanFrecon