Meta Soft Label Generation for Noisy Labels

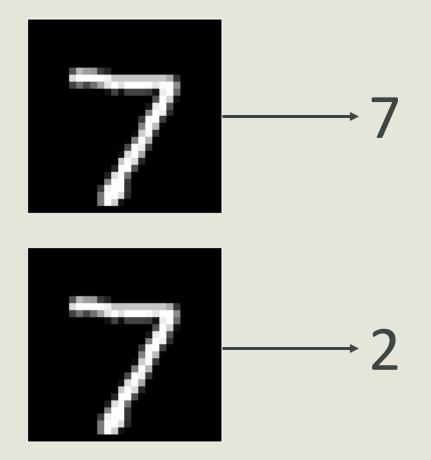
Görkem Algan Ilkay Ulusoy

- Motivation and Problem Definition
- Preliminary Knowledge on Meta-Learning
- Proposed Algorithm
- Experimental Results

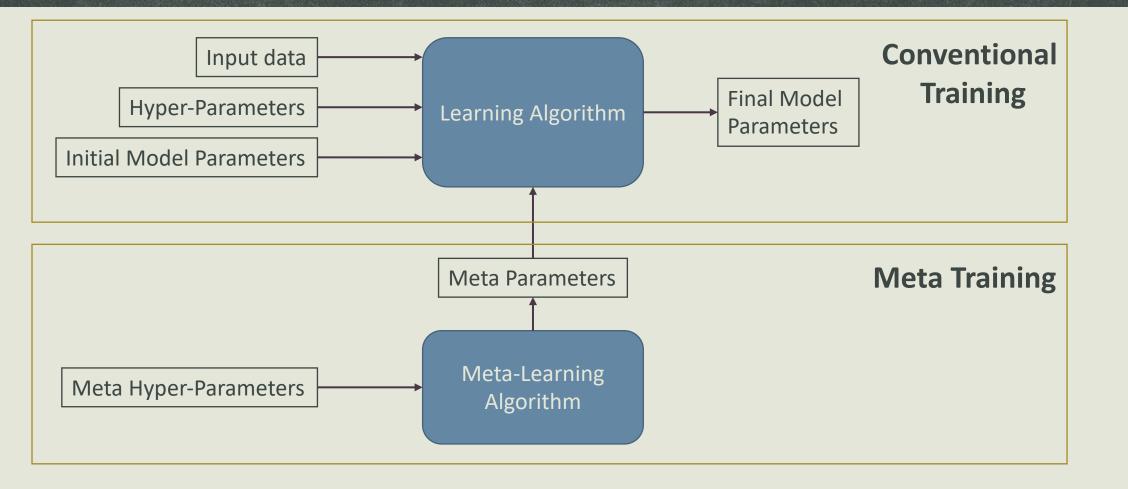
- Motivation and Problem Definition
- Preliminary Knowledge on Meta-Learning
- Proposed Algorithm
- Experimental Results

Motivation and Problem Definition

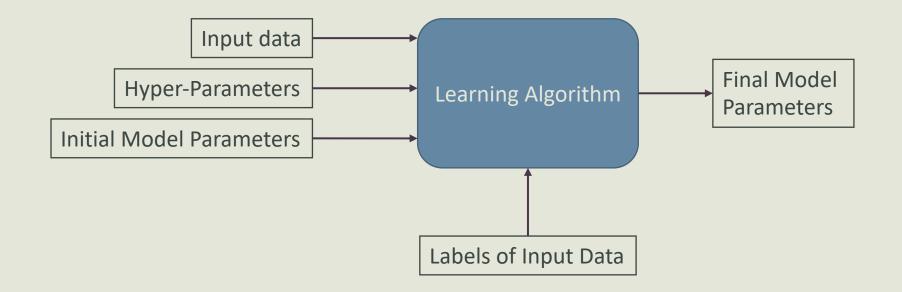
- Reasons behind recent success of deep learning
 - Computational power
 - Large datasets
- Problems with large datasets
 - Hard to obtain clean data
 - Hard to label whole dataset
 - Hard to be sure about labeler accuracy
- As a result "noisy datasets"


Motivation and Problem Definition

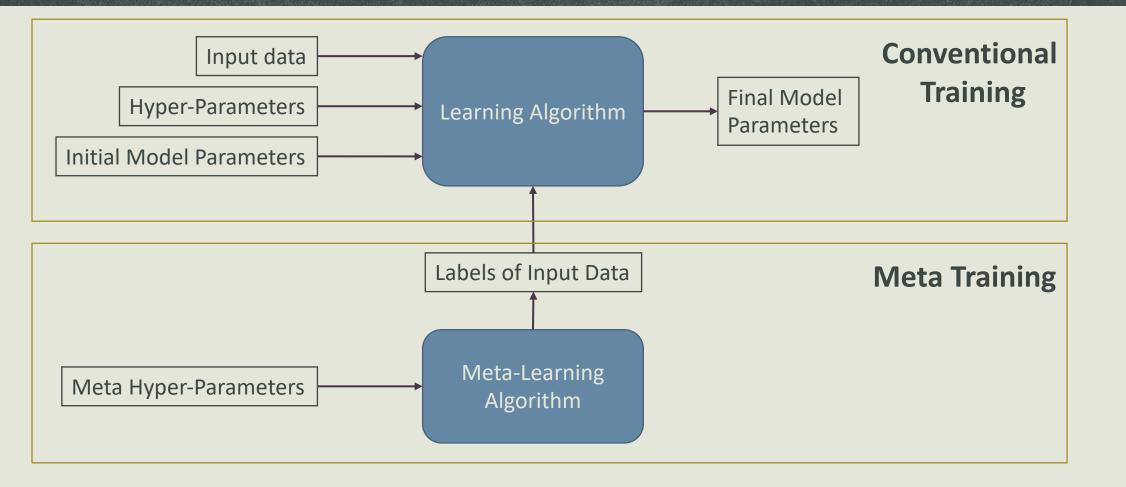
- Two types of noise
 - Feature noise
 - Label noise


Motivation and Problem Definition

- Two types of noise
 - Feature noise
 - Label noise


- Motivation and Problem Definition
- Preliminary Knowledge on Meta-Learning
- Proposed Algorithm
- Experimental Results

Meta Learning



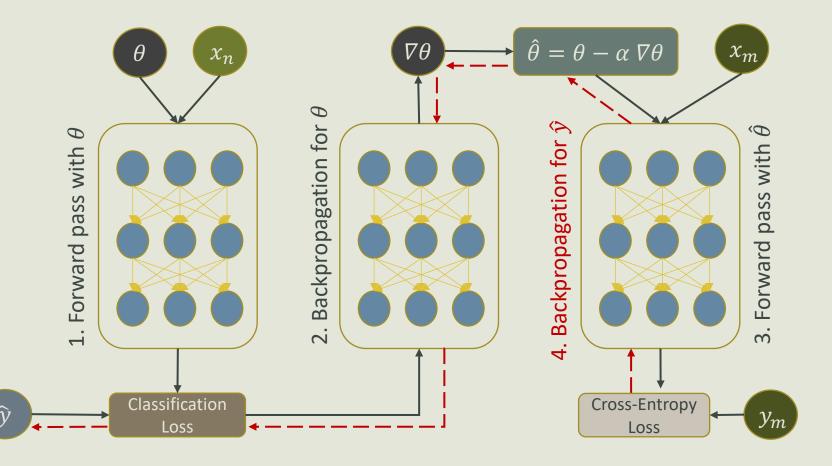
- Motivation and Problem Definition
- Preliminary Knowledge on Meta-Learning
- Proposed Algorithm
- Experimental Results

Meta Soft Label Generation for Noisy Labels

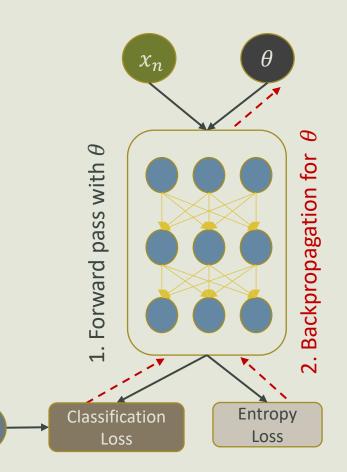
Meta Soft Label Generation for Noisy Labels

Hard Label vs Soft Label

Η	lard	Labe	9	Soft	Label
	0:	0		0:	0
	1:	0		1:	0.3
	2:	0		2:	0.1
	3:	0		3:	0
	4:	0		4:	0
	5:	0		5:	0
	6:	0		6:	0
	7:	1		7:	0.6
	8:	0		8:	0
	9:	0		9:	0


Hard Label vs Soft Label

and the second se	


Η	ard	Labe	9	Soft	Label
	0:	0		0:	0
	1:	0		1:	0.3
	2:	0		2:	0.1
	3:	0		3:	0
	4:	0		4:	0
	5:	0		5:	0
	6:	0		6:	0
	7:	1		7:	0.6
	8:	0		8:	0
	9:	0		9:	0

Meta Soft Label Generation for Noisy Labels

Meta-Soft-Label Generation Phase

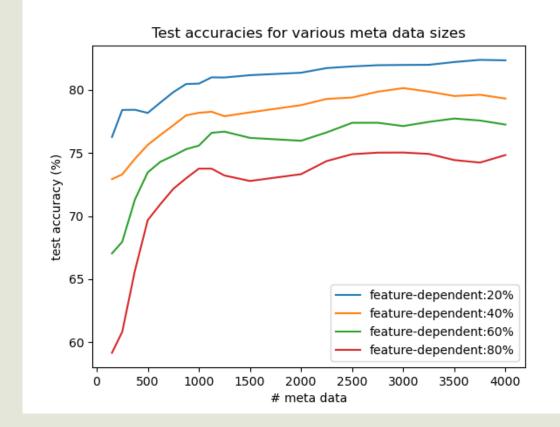
Training Phase

Loss functions

• Classification loss:
$$KL(f_{\theta}(x_i)||y_i) = -\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{C}f_{\theta}^j(x_i)\log(\frac{f_{\theta}^j(x_i)}{y_i^j})$$

• Entropy loss:
$$-\frac{1}{N}\sum_{i=1}^{N}\sum_{j=1}^{C}f_{\theta}^{j}(x_{i})\log(f_{\theta}^{j}(x_{i}))$$

Meta Soft Label Generation for Noisy Labels


- Two stage learning:
 - 1. Warm-up training with noisy labels
 - 2. Learning with proposed algorithm
- Warm-up training for
 - Deep networks are highly noise robust in initial epochs
 - Random network predictions are bad for meta-objective
 - Unstabilised meta-gradients

- Motivation and Problem Definition
- Preliminary Knowledge on Meta-Learning
- Proposed Algorithm
- Experimental Results

CIFAR10 Results

Noise type	Uniform			Feature-dependent				
Noise ratio (%)	20	40	60	80	20	40	60	80
Cross Entropy	82.69	76.84	66.46	38.04	81.21	71.46	69.19	23.89
Symmetric CE	82.72	79.79	74.09	54.56	76.21	67.76	fail	fail
Generalized CE	84.62	81.98	74.48	44.36	81.21	71.80	66.56	fail
Bootstrap	82.51	76.97	66.13	38.41	81.24	71.63	69.74	23.25
Co-teaching	85.96	80.24	70.38	41.22	81.19	72.47	67.67	18.66
Forward Loss	83.31	80.25	71.34	28.77	77.60	69.21	39.23	fail
Joint Opt.	83.74	78.75	68.17	39.22	81.61	74.03	72,15	44.15
PENCIL	83.34	79.27	71.41	46.57	81.62	75.08	69.24	fail
MLNT	83.20	78.14	66.34	40.80	82.46	72.52	70.12	Faul
Meta-Weight	84.12	80.68	71.78	46.71	81.06	71.50	67.50	22.28
MSLG	83.48	78.82	72.92	56.26	82.62	79.30	77.33	74.87

Test Accuracies for Different Numbers of Meta-Data

Clothing1M Results

Method	Accuracy	Method	Accuracy
Generalized CE	67.85	Joint Optimization	72.16
Bootsrap	69.35	MLNT	73.47
Co-Teaching	69.63	PENCIL	73.49
Forward Loss	70.94	Meta-Weight Net	73.72
Symmetric CE	71.02	MSLG	76.02

Food101N Results

Method	Accuracy	Method	Accuracy	
Generalized CE	71.60	Bootsrap	78.03	
Meta-Weight Net	76.12	PENCIL	78.26	
Joint Optimization	76.18	Co-Teaching	78.95	
MSLG: 79.06				

Thank You for Listening!

