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Motivation

* BN layer normalizes the batch input to zero mean and unit variance

* Smoother loss landscape

* Faster convergence

* Making the distributions of the features in the same layer more
similar would make the network perform better

* The third moment, Skewness

* More non-linearity
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Batch Normalization with Skewness Reduction

Definition 2. Let ¢, : R — R be a function, the skewness
correction function are defined as follows:
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where p > 1.
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Batch Normalization with Skewness Reduction

Algorithm 1: Training stage of BNSR, applied to
features x over a mini-batch
Input : Values of = over a mini-batch:
B = {ml...ﬂ’l };
Parameters: Parameters to be learned: v, 3
Output : y; = BN, 5(2;)
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Algorithm 2: Testing stage of BNSR, applied to
features x over a mini-batch

Input : Values of x over a mini-batch:
B = {wl...m };
Output  : y; = BN, 3(z;)
1 Calculate the population i, o by unbiased estimation
or exponential moving average
for i =1...m do
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Experiments

* Determine p
* VGG-19 on CIFAR-100, pin {1.01, 1.02, 1.03, 1.04, 1.05}

* Impact of the similarity of the feature distributions

e T < x (identity mapping)

e T 4 ar+ b where a,b ~ N,,(0,0.5)

o T ¢ @pu(x) where p ~ Unifp,(1,1.05)
o T ¢ ¢p(x) where p=1.01

| BNSR BN Noise(u, o)  Noise(p)
error | 30.61 31.35 33.52 32.1
TABLE 1

COMPARISON OF ERROR RATES (%) OF BNSR, BN, BN WITH NOISY
MEAN AND VARIANCE, BN WITH NOISY SKEWNESS ON CIFAR-100. THE
TRAINING LOSS AND ERROR RATE CURVES ARE IN FIG. 2
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Experiments

e Features in the earlier layers

* Analyze where BNSR is more effective
 BNSR is used for all layers
* BNSR is used only for the earlier layers
 BNSR is used only for the later layers

100%  33%(uni) 33%(early)  33%(late)
error | 23.49  23.40 23.74 25.20

TABLE 111
COMPARISON OF ERROR RATES (%) OF BNSR UNDER DIFFERENT
PERCENTAGE OF USAGE ON CIFAR-100. THE TRAINING LOSS AND
TESTING ERROR PLOTS CAN BE FOUND IN FIG. 4.
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Experiments

 Comparison with other normalization schemes

BNSR BN LN IN
error | 23.49 2551 3998 28.72
TABLE 11

COMPARISON OF ERROR RATES (%) OF BNSR, BN, LN, IN ON
CIFAR-100. THE TRAINING LOSS AND ERROR RATE CURVES ARE IN FIG.
3

BNSR BN
error 22.73 23.17
ABLE IV

COMPARISON OF ERROR RATES (%) OF BN AND BNSR ON IMAGENET
DATASET. THE TRAINING LOSS AND ERROR RATE CURVES ARE IN FIG. 7




