Combining Similarity and Adversarial Learning to Generate Visual Explanation: Application to Medical Image Classification

Martin Charachon¹², Céline Hudelot², Paul-Henry Cournède², Camille Ruppli¹, Roberto Ardon¹

¹Incepto Medical ²Université Paris-Saclay, CentraleSupélec, MICS

CentraleSupélec

CentraleSupélec

Prior Work

Perturbation based [3, 4, 5]

Prior Work

CAM [2]

Perturbation based [3, 4, 5]

Prior Work: Perturbation-based

Explanation method	Generation	Optimization	Regularization	$x_p \in D$	Indep. p	Real-time Situation
BBMP [3]	Perturbation Mask	Unique x	+++	X	X	~
Mask Generator [4]	Perturbation Mask	Database D	++	X	X	✓
Perturbation-ball [5]	Adversarial Image	Unique x	+++	1	1	~

CentraleSupélec

Prior Work: Perturbation-based

Explanation method	Generation	Optimization	Regularization	$x_p \in D$	Indep. p	Real-time Situation
BBMP [3]	Perturbation Mask	Unique x	+++	X	×	~
Mask Generator [4]	Perturbation Mask	Database D	++	X	X	✓
Perturbation-ball [5]	Adversarial Image	Unique x	+++	✓	A 🗸	~
			A			
			A	d-hoc		
	Heuristi	c regularizatio	n Pert	urbation	Con	nputation cost

Issues:

 \rightarrow Non discriminative differences in $|x - g_a(x)|$

Issues:

- \rightarrow Non discriminative differences in $|x g_a(x)|$
- \rightarrow medical device space χ_0

Issues:

- \rightarrow Non discriminative differences in $|x g_a(x)|$
- \rightarrow medical device space χ_0
- \rightarrow model generation space χ_a

Issues:

- \rightarrow Non discriminative differences in $|x g_a(x)|$
- \rightarrow medical device space χ_0
- \rightarrow model generation space χ_a

Approach:

- \rightarrow Learn to generate an adversarial example $g_a(x) \in \chi_a$
- \rightarrow Learn to **project** x in space $\chi_a \rightarrow g_s(x)$

Approach:

- \rightarrow Learn to generate an adversarial example $g_a(x) \in \chi_a$
- \rightarrow Learn to **project** x in space $\chi_a \rightarrow g_s(x)$

Explanation definition:

$$E_{f_c}(x) = |g_s(x) - g_a(x)|$$

CentraleSupélec

Original image

CentraleSupélec

Weak Localization

$$IoU_i = \frac{M_{GT} \cap M_{Ei}}{M_{GT} \cup M_{Ei}}$$

IOU SCORES AT DIFFERENT THRESHOLDS OF BINARIZATION COMPARISON TO STATE OF THE ART METHODS WITHOUT (TOP) AND
WITH (BOTTOM) AUGMENTATIONS

Explanation method			IOU		
Percentile	80	85	90	95	98
Gradient [1]	0.203	0.199	0.187	0.152	0.097
GradCAM [2]	0.237	0.225	0.195	0.138	0.070
BBMP [3]	0.233	0.226	0.204	0.154	0.087
Mask Generator [4]	0.222	0.219	0.208	0.169	0.103
"Naive"	0.177	0.173	0.158	0.118	0.064
0	0.248	0.250	0.232	0.173	0.097
Ours	0.292	0.292	0.272	0.206	0.115

$$AUC_{Loc} = \sum_{i} P_i(R_i - R_{i-1})$$

ESTIMATED AUC SCORES FOR PRECISION-RECALL AND COMPUTATION TIME - COMPARISON TO STATE OF THE ART METHODS WITHOUT (TOP)

AND WITH (BOTTOM) AUGMENTATIONS

Explanation method	Total AUC	Partial AUC	Time (s)	
Gradient [1]	0.287	0.189	2.04	
GradCAM [2]	0.326	0.235	0.78	
BBMP [3]	0.326	0.229	17.14	
Mask Generator [4]	0.327	0.226	0.09	
"Naive"	0.238	0.145	0.10	
0	0.339	0.256	0.05	
Ours	0.412	0.328	0.63	

Weak Localization

$$IoU_i = \frac{M_{GT} \cap M_{Ei}}{M_{GT} \cup M_{Ei}}$$

IOU SCORES AT DIFFERENT THRESHOLDS OF BINARIZATION COMPARISON TO STATE OF THE ART METHODS WITHOUT (TOP) AND
WITH (BOTTOM) AUGMENTATIONS

Explanation method			IOU		
Percentile	80	85	90	95	98
Gradient [1]	0.203	0.199	0.187	0.152	0.097
GradCAM [2]	0.237	0.225	0.195	0.138	0.070
BBMP [3]	0.233	0.226	0.204	0.154	0.087
Mask Generator [4]	0.222	0.219	0.208	0.169	0.103
"Naive"	0.177	0.173	0.158	0.118	0.064
0	0.248	0.250	0.232	0.173	0.097
Ours	0.292	0.292	0.272	0.206	0.115

$$AUC_{Loc} = \sum_{i} P_i(R_i - R_{i-1})$$

ESTIMATED AUC SCORES FOR PRECISION-RECALL AND COMPUTATION TIME - COMPARISON TO STATE OF THE ART METHODS WITHOUT (TOP)

AND WITH (BOTTOM) AUGMENTATIONS

Explanation method	Total AUC	Partial AUC	Time (s)	
Gradient [1]	0.287	0.189	2.04	
GradCAM [2]	0.326	0.235	0.78	
BBMP [3]	0.326	0.229	17.14	
Mask Generator [4]	0.327	0.226	0.09	
"Naive"	0.238	0.145	0.10	
	0.339	0.256	0.05	
Ours	0.412	0.328	0.63	

Summary of Contribution

$$\overline{E}_{f_e}(x) = \frac{1}{N+1} \left[E_{f_e}(x) + \sum_{i=1}^{N} \psi_i^{-1} \left(E_{f_e}(\psi_i(x)) \right) \right]$$

References

- [1] K. Simonyan, A. Vedaldi, and A. Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps," in ICLR, 2014
- [2] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization," in ICCV, 2017
- [3] R. C. Fong and A. Vedaldi, "Interpretable explanations of black boxes by meaningful perturbation," in ICCV, 2017
- [4] P. Dabkowski and Y. Gal, "Real time image saliency for black box classifiers," in NIPS, 2017
- [5]. Elliott, S. Law, and C. Russell, "Adversarial perturbations on the perceptual ball," ArXiv, 2019

CentraleSupélec

Thank you for your attention

Any Question?

Appendices

$$(\bar{g}_{s}, \bar{g}_{a}) = \underset{g_{s}, g_{a}}{\operatorname{argmin}} \left\{ \begin{array}{l} \mathbb{E}_{x} \left(\begin{array}{c} L_{d}(x, g_{s}(x), g_{a}(x)) & + \\ L_{f_{c}}(x, g_{s}(x), g_{a}(x)) & + \\ L_{reg}(x, g_{s}(x), g_{a}(x)) & + \\ \end{array} \right) \right\}$$

$$+ L_{s,a}(g_{s}, g_{a})$$

x, $g_s(x)$ and $g_a(x)$ should be similar

$$(\bar{g}_s, \bar{g}_a) = \underset{g_s, g_a}{\operatorname{argmin}} \left\{ \begin{array}{l} \mathbb{E}_x \left(\begin{array}{c} L_d(x, g_s(x), g_a(x)) \\ L_{f_c}(x, g_s(x), g_a(x)) \\ L_{reg}(x, g_s(x), g_a(x)) \end{array} \right) \\ + L_{s,a}(g_s, g_a) \end{array} \right\}$$

$$f_{\mathbf{c}}(\mathbf{g}_{s}(\mathbf{x})) = f_{\mathbf{c}}(\mathbf{x})$$

$$f_{\mathbf{c}}(\mathbf{g}_{s}(\mathbf{x})) \neq f_{\mathbf{c}}(\mathbf{x})$$

$$(\bar{g}_{s}, \bar{g}_{a}) = \underset{g_{s}, g_{a}}{\operatorname{argmin}} \left\{ \mathbb{E}_{x} \left(\underbrace{L_{d}(x, g_{s}(x), g_{a}(x))}_{L_{f_{c}}(x, g_{s}(x), g_{a}(x))} + \right) \right\}$$

$$+ L_{s,a}(g_{s}, g_{a})$$

$$(\bar{g}_s, \bar{g}_a) = \operatorname*{argmin}_{g_s, g_a} \left\{ \begin{array}{l} \mathbb{E}_x \left(\begin{array}{c} L_d(x, g_s(x), g_a(x)) \\ L_{f_c}(x, g_s(x), g_a(x)) \\ \end{array} \right) + \\ L_{s,a}(g_s, g_a) \end{array} \right\} \\ + L_{s,a}(g_s, g_a) \\ \begin{array}{c} \mathbf{g}_s(\mathbf{x}) \text{ close to } \mathbf{g}_a(\mathbf{x}) \\ \mathbf{Smooth \ differences} \end{array}$$

$$(\bar{g}_s, \bar{g}_a) = \operatorname*{argmin}_{g_s, g_a} \left\{ \begin{array}{l} \mathbb{E}_x \left(\begin{array}{c} L_d(x, g_s(x), g_a(x)) \\ L_{f_c}(x, g_s(x), g_a(x)) \\ L_{reg}(x, g_s(x), g_a(x)) \end{array} \right) \right\} \\ + \left[\begin{array}{c} L_{s,a}(g_s, g_a) \end{array} \right] \\ \mathbf{g}_s \text{ and } \mathbf{g}_a \text{ parameters close} \end{array} \right.$$

 $x \to g_s(x) \in \chi_s \to \chi_s \sim \chi_a$

Adversarial and Similar Generation

SUMMARY: SIMILAR AND ADVERSARIAL GENERATION

Explanation method	L_{reg}	$L_{s,a}$	AUC_{os}	$AUC_{\bar{o}a}$	$x \leftarrow$	x _s	$x \leftarrow$	$\rightarrow x_a$	x_s +	$\rightarrow x_a$
"Naive"	V	9-0	- 2	0.939	-	-	0.994	41.92	4	-
Duo AE (TV)	1	×	1.0	0.905	0.996	44.07	0.987	39.47	0.994	43.89
Duo AE (W,TV)	1	1	1.0	0.958	0.995	41.99	0.987	39.08	0.995	44.26
Single AE (TV)	1	×	1.0	0.961	0.997	44.57	0.989	40.67	0.996	45.25
Single AE (W)	X	1	0.998	0.949	0.995	43.61	0.994	42.42	0.999	52.26
Single AE (W, TV)	1	1	0.998	0.952	0.995	43.88	0.994	42.63	0.999	51.93

Weak Localization

$$IoU_i = \frac{M_{GT} \cap M_{Ei}}{M_{GT} \cup M_{Ei}}$$

IOU SCORES AT DIFFERENT THRESHOLDS OF BINARIZATION COMPARISON TO STATE OF THE ART METHODS WITHOUT (TOP) AND
WITH (BOTTOM) AUGMENTATIONS

Explanation method			IOU		
Percentile	80	85	90	95	98
Condinat [1]	0.203	0.199	0.187	0.152	0.097
Gradient [1]	0.256	0.252	0.236	0.190	0.117
CoodCAM [2]	0.237	0.225	0.195	0.138	0.070
GradCAM [2]	0.271	0.263	0.244	0.190	0.105
BBMP [3]	0.233	0.226	0.204	0.154	0.087
Mask Consessor [4]	0.222	0.219	0.208	0.169	0.103
Mask Generator [4]	0.259	0.264	0.259	0.221	0.137
"Naive"	0.177	0.173	0.158	0.118	0.064
ivaive	0.239	0.230	0.208	0.156	0.087
Ours	0.248	0.250	0.232	0.173	0.097
Ours	0.292	0.292	0.272	0.206	0.115

$$AUC_{Loc} = \sum_{i} P_i(R_i - R_{i-1})$$

ESTIMATED AUC SCORES FOR PRECISION-RECALL AND COMPUTATION TIME - COMPARISON TO STATE OF THE ART METHODS WITHOUT (TOP) AND WITH (BOTTOM) AUGMENTATIONS

Explanation method	Total AUC	Partial AUC	Time (s)
Cardinat [1]	0.287	0.189	2.04
Gradient [1]	0.374	0.274	2.83
GradCAM [2]	0.326	0.235	0.78
GradCAM [2]	0.397	0.302	5.09
BBMP [3]	0.326	0.229	17.14
M-1 C	0.327	0.226	0.09
Mask Generator [4]	0.404	0.308	0.68
"Naive"	0.238	0.145	0.10
Naive	0.325	0.232	0.75
0	0.339	0.256	0.05
Ours	0.412	0.328	0.63

