LiNet: A Lightweight Network for Single Image Super Resolution

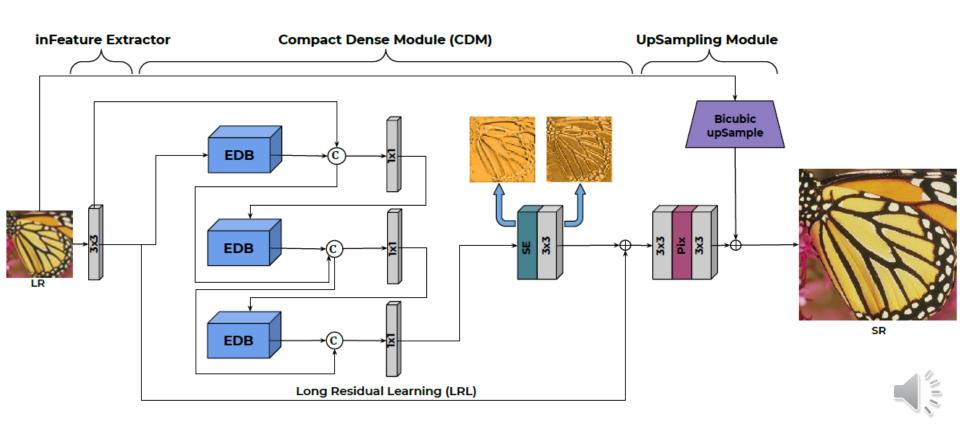
Armin Mehri Computer Vision Center

Parichehr B. Ardakani Computer Vision Center

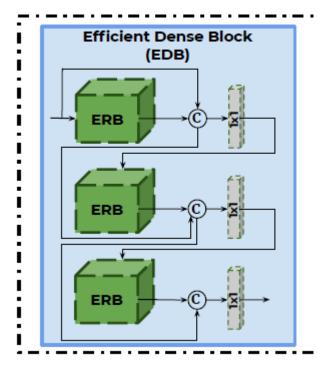
Angel D.Sappa Computer Vision Center, ESPOL Polytechnic University

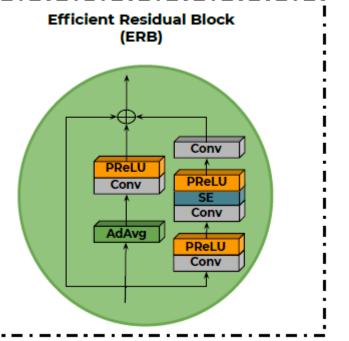
Outline

- → Introduction & Motivation
- → Proposed Network Architecture
 - ◆ Efficient Dense Block (EDB)
 - ◆ Efficient Residual Block (ERB)
- → Experimental Results
- → Qualitative Results
- → Conclusion

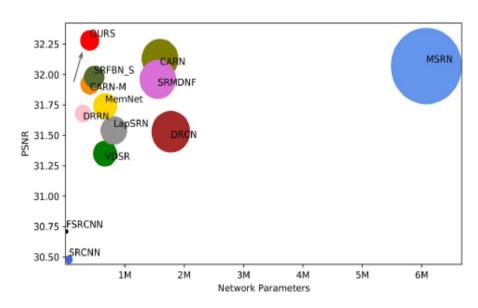


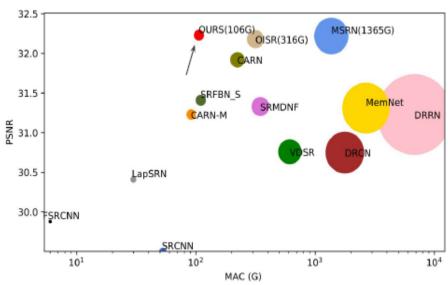
Introduction & Motivation


- Super Resolution is the process of recovering a High Resolution (HR) image from a given Low
 Resolution (LR) image
- Super Resolution is an **ill-posed** inverse problem
- By increasing the scale factor, difficulty of the problem increases
- Most of the approaches achieved high performance by sacrificing memory and computational cost
- A lightweight network, with a performance roughly to heavy and deep methods, is needed for on-the-edge technology

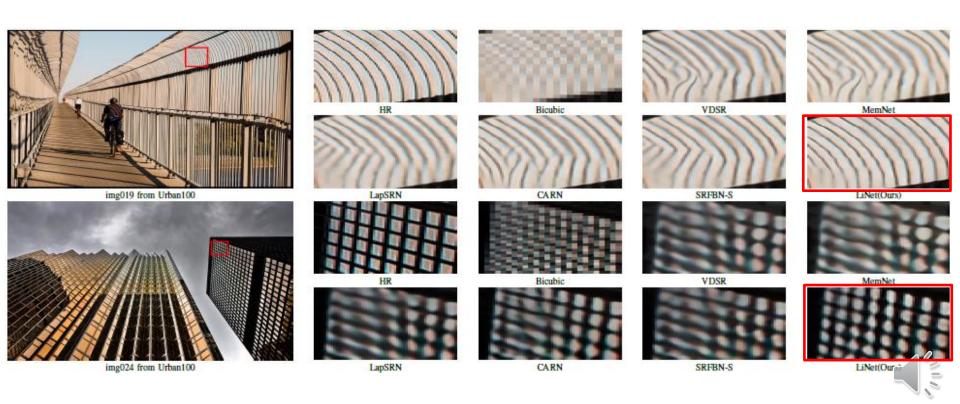


Proposed Network Architecture


EDB and **ERB**



Performance Vs. Model Size and Mac



Experimental Results

Model	Scale	Params	Flops	Set5	Set14	B100	Urban100
SRCNN	$\times 2$	l		36.66/0.9542	32.42/0.9063	31.36/0.8879	29.50/0.8946
	$\times 3$	57K	52.7G	32.75/0.9090	29.28/0.8209	28.41/0.7863	26.24/0.7989
	$\times 4$			30.48/0.8628	27.49/0.7503	26.90/0.7101	24.52/0.7221
FSRCNN	$\times 2$			37.00/0.9558	32.63/0.9088	31.53/0.8920	29.88/0.9020
	$\times 3$	12K	6.0G	33.16/0.9140	29.43/0.8242	28.53/0.7910	26.43/0.8080
	$\times 4$			30.71/0.8657	27.59/0.7535	26.98/0.7150	24.62/0.7280
VDSR	$\times 2$			37.53/0.9587	33.03/09124	31.90/0.8960	30.76/0.9140
	×3	665K	612.6G	33.66/0.9213	29.77/0.8314	28.82/0.7976	27.14/0.8279
	$\times 4$			31.35/0.8838	28.01/0.7674	27.29/0.7251	25.18/0.7524
LapSRN	$\times 2$	813K	29.9G	37.52/0.9590	33.08/0.9130	31.80/0.8950	30.41/0.9100
	$\times 4$	01371	149.4G	31.54/0.8850	28.19/0.7720	27.32/0.7280	25.21/0.7560
DRRN	$\times 2$			37.74/0.9591	33.23/0.9136	32.05/0.8973	31.23/0.9188
	$\times 3$	297K	6796.6G	34.03/0.9244	29.96/0.8349	28.95/0.8004	27.53/0.8378
	$\times 4$			31.68/0.8888	28.21/0.7720	27.38/0.7284	25.44/0.7638
MemNet	$\times 2$			37.78/0.9597	33.28/0.9142	32.08/0.8978	31.31/0.9195
	$\times 3$	667K	2662.4G	34.09/0.9248	30.00/0.8350	28.96/0.8001	27.56/0.8376
	$\times 4$			31.74/0.8893	28.26/0.7723	27.40/0.7281	25.50/0.7630
CARN-M	$\times 2$		91.2G	37.53/0.9583	33.26/0.9141	31.92/0.8960	31.23/0.9193
	$\times 4$	412K	46.1G	33.99/0.9236	30.08/0.8367	28.91/0.8000	27.55/0.8385
	$\times 4$	l	32.5G	31.92/0.8903	28.42/0.7762	27.44/0.7304	25.62/0.7694
SRFBN-S	$\times 2$			37.78/0.9597	33.35/0.9156	32.00/0.8970	31.41/0.9207
	$\times 3$	483K	119G	34.20/0.9255	30.10/0.8350	28.96/0.8010	27.66/0.8415
	$\times 4$			31.98/0.9594	28.45/0.7779	27.44/0.7313	25.71/0.7719
DRCN	$\times 2$		222.8G	37.63/0.9588	33.04/0.9118	31.85/0.8942	30.75/0.9133
	$\times 3$	1774K	118.8G	33.82/0.9226	29.76/0.8311	28.80/0.7963	27.15/0.8276
	$\times 4$		90.9G	31.53/0.8854	28.02/0.7670	27.23/0.7233	25.14/0.7510
CARN	$\times 2$		222.8G	37.76/0.9590	33.52/0.9166	32.09/0.8978	31.92/0.9256
	$\times 3$	1592K	118.8G	34.29/0.9255	30.29/0.8407	29.06/0.8434	28.06/0.8493
	$\times 4$	l	90.9G	32.13/0.8937	28.60/0.7806	27.58/0.7349	26.07/0.7837
SRMDNF	$\times 2$	1513K	347.7G	37.79/0.9600	33.32/0.9150	32.05/0.8980	31.33/0.9200
	$\times 3$	1530K	156.3G	34.12/0.9250	30.04/0.8370	28.97/0.8030	27.57/0.8400
	$\times 4$	1555K	89.3G	31.96/0.8930	28.35/0.7770	27.49/0.7340	25.68/0.7730
OISR-RK-S	$\times 2$	1370K	316.2G	37.98/0.9604	33.58/0.9172	32.18/0.8996	32.21/0.9290
	$\times 3$	1370K	160.1G	34.39/0.9273	30.33/0.8420	29.10/0.8083	28.03/0.8544
	$\times 4$	1520K	114.2G	32.21/0.8950	28.63/0.7822	27.58/0.7364	26.14/0.7888
MSRN	$\times 2$	5930K	1365.4G	38.08/0.9605	33.74 /0.9170	32.23/0.9013	32.22/0.9326
	$\times 3$	6008K	621.2G	34.38/0.9262	30.34 /0.8395	29.08/0.8041	28.08/0.8554
	$\times 4$	6078K	349.8G	32.07/0.8903	28.60/0.7751	27.52/0.7273	26.04/0.7896
LiNet [Ours]	$\times 2$	1	106.0G	38.03/0.9610	33.63/0.9176	32.22/0.9099	32.19/ 0.9330
	$\times 3$	509K	66.2G	34.40/0.9285	30.33/0.8419	29.13/0.8175	28.07/0.8534
	$\times 4$	l	35.0G	32.28/0.9034	28.62/0.7810	27.60/0.7373	26.15/0.7956

TABLE I: Comparison with light computational methods on scale factors $[\times 2, \times 3, \times 4]$. Best results are **highlighted** and second best results are underlined.

Qualitative Results on BI

Conclusion

- A lightweight network with the best performance on the **SOTA** has been presented
- Compact Dense Module is proposed by focusing on intermediate and high level information
- An Efficient Residual Block is proposed, which extract the information via multi-learning pathway
- Extensive evaluations and comparisons on benchmark datasets well demonstrate the effectiveness of our LiNet

