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Issue
1. Objects with complex topology are difficult to accurately reconstruct.

2. High-frequency edge information is easy to be smoothed. 

Our Motivation : To address these problems



Main Contribution of Our Method

(1) We use DoG to process input images to extract edge geometry and corners information. Because we realize 
the object edge geometry and corners information are important for neural network to capture complex topology.

(2) We design side branches from the intermediate layers of our neural network, so each side branch produces 
more diverse representations along its own pathway.

(3) We Unlike previous methods computing the average value or fixed weight of all branches predicted 
probability, we dynamically fuse the predicted probability of all branches to obtain the final predicted probability

(4) Extensive evaluation on a large-scale publicly available dataset ShapeNet demonstrates our method can 
achieve higher evaluation results than the state-of-the-art methods.



Proposed Framework

Fig. 1 The workflow of the proposed DmifNet framework. Our model has a main branch and three side branches: (a) The main branch uses the 
autoencoder to process the sample data and get the prediction results. (b)(c)Branches I and II process data by exploiting sub-branches from different 
intermediate layers of the main branch. (d)Branch III first uses the DoG to process the samples to obtain the Gaussian difference map, then we 
concatenate the original input image and Gaussian difference map as input information to predict result. Finally, we dynamically fuse the prediction 
results of the main branch and the side branches to get final prediction results.



Difference of Gaussians
1. The process of side branch III preprocessing input image

2. Formulation



 Multi-branch Consistent Optimization 

    we use a consistent optimization goal to optimize the multi-branch network. By the objective function 
equation, we not only directly collect the classification loss of each branch to optimize the network, but also pay 
attention to the different representations of each branch in its pathway.



 Quantitative Results on ShapeNet
Tab1. Quantitative evaluations on the ShapeNet under IoU, Normal consistency and Chamfer distance. We observe 
that our method approach outperforms other state-of-the-art learning based methods in Normal consistency and IoU.



Qualitative Results on ShapeNet

Fig. 2 Single Image 3D Reconstruction on ShapeNet. The first column is the input 2D images, the last two 
columns are the results of our method. The other columns show the results for various methods. 
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Qualitative Results on Real Data

Fig.3 Single Image 3D Reconstruction on Real Data. The first column is the input 2D images, the other 
columns are the reconstructed results of our method in different viewpoints.
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