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Introduction

 What are some best practices for machine learning?

 How can data labeling be done efficiently?

 What is Semi-supervised learning?

 What is the benefits of dimensionality reduction or manifold 

learning methods.



Introduction

The processing is a challenging taskHigh dimensional data

Need for a low dimensional representation of high

dimensional data that preserves the intrinsic information of

data. This is what we call dimensionality reduction or

manifold learning methods.

Dimensionality Reduction

machine learning models 
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Introduction

 An iterative paradigm of joint feature extraction and labeling for semi-

supervised discriminant analysis (ISDA) [Ren 2018]

 Semi-supervised linear discriminant analysis(SLDA) [Wang 2016]

 Semi-supervised Discriminant Analysis (SDA) [Cai 2007]

 Semi-supervised Discriminant Embedding (SDE) [Huang 2012]

 Flexible Manifold Embedding (FME) [Nie 2010]

Related work



Proposed method

Inter-Class Distances Maximization

Label Smoothness

Projection Smoothness

Orthogonality Constraint

Criterion



Proposed method

Iterative Optimization
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Proposed method
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Experiments & Comparisons

Dataset Name
Number of 

samples

Number of 

classes
~Samples/class

Dimension of 

a sample
Dataset type

ORL 400 40 10 32 × 32 Face Images

UMIST 575 20 29 28 × 23 Face Images

Extended Yale 1774 28 63 32 × 32 Face Images

USPS 1100 10 110 16 × 16
Handwritten 

digits

COIL-20 360 20 18 51 × 51 Object Images

Databases



Experiments & Comparisons

EXT - Yale 1 Sample 2 Samples 3 Samples

Method T U T U T U

FME 36.8% 40.7% 51.2% 54.7% 56.2% 59.9%

KFME 27.5% 29.3% 45.3% 46.5% 52.2% 56.3%

SDA 32.8% 35.0% 48.5% 50.7% 54.6% 58.2%

SDE 43.8% 46.0% 61.4% 60.5% 65.4% 67.1%

TR-FSDA 41.8% 45.2% 59.4% 58.6% 63.4% 64.0%

GLPP 25.5% 28.1% 41.0% 42.6% 49.7% 54.4%

SLDA 47.9% 51.1% 63.4% 64.3% 67.1% 69.7%

ISDA 47.9% 51.1% 63.3% 63.9% 67.2% 69.4%

JSLDE 46.4% 49.4% 65.4% 67.0% 68.8% 71.9%

Results



Experiments & Comparisons

UMIST 1 Sample 2 Samples 3 Samples

Method T U T U T U

FME 37.8% 60.2% 45.2% 72.7% 51.4% 87.5%

KFME 39.3% 58.8% 48.7% 72.5% 57.0% 87.1%

SDA 39.6% 60.1% 57.3% 79.1% 63.0% 84.4%

SDE 40.1% 65.0% 51.0% 78.9% 58.9% 82.4%

TR-FSDA 38.3% 57.5% 46.7% 68.1% 53.3% 77.3%

GLPP 40.3% 59.7% 57.1% 78.7% 65.0% 88.3%

SLDA 37.6% 57.8% 47.8% 74.9% 58.0% 79.8%

ISDA 38.1% 59.3% 47.5% 75.1% 57.6% 80.6%

JSLDE 44.2% 72.3% 53.3% 80.0% 63.0% 89.2%

Results



Experiments & Comparisons

Figure: Recognition accuracy vs. feature dimension obtained with the 

EXT Yale and Coil-20 datasets (test evaluation).

Extended Yale Dataset Coil-20 Dataset



Experiments & Comparisons

Figure: t-SNE visualization of the ORL dataset. (a) Face images using 

their original features. (b) Face images using their projection obtained 

by JSLDE.

(a) Original (b) Projected



Conclusion

• We introduced a framework that is able to jointly estimate the soft 
labels and linear embedding for a semi-supervised context.

• The iterative criterion enforces the smoothness of both the predicted 
labels and the linear projection of the data samples.
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