Soft Label and Discriminant Embedding Estimation for Semi-Supervised Classification

Fadi Dornaika, Abdullah Baradaaji, Youssof El Traboulsi

University of the Basque Country UPV/EHU, San Sebastian, Spain IKERBASQUE, Basque Foundation for Science, Bilbao, Spain

eman ta zabal zazu

Universidad

del País Vasco

- 1. Introduction
- 2. Proposed method
- 3. Experiments & Comparisons
- 4. Conclusion

- What are some best practices for machine learning?
- > How can data labeling be done efficiently?
- > What is Semi-supervised learning?
- What is the benefits of dimensionality reduction or manifold learning methods.

Introduction

Dimensionality Reduction

machine learning models

High dimensional data

The processing is a challenging task

Need for a low dimensional representation of high dimensional data that preserves the intrinsic information of data. This is what we call dimensionality reduction or manifold learning methods.

Introduction

Semi-Supervised Learning

del País Vasco

Introduction

Related work

- An iterative paradigm of joint feature extraction and labeling for semisupervised discriminant analysis (ISDA) [Ren 2018]
- Semi-supervised linear discriminant analysis(SLDA) [Wang 2016]
- Semi-supervised Discriminant Analysis (SDA) [Cai 2007]
- Semi-supervised Discriminant Embedding (SDE) [Huang 2012]
- Flexible Manifold Embedding (FME) [Nie 2010]

Proposed method

Criterion

Universidad

del País Vasco

Proposed method

(1) S_b is between-class graph, E is a matrix of ones.

Databases

Dataset Name	Number of samples	Number of classes	~Samples/class	Dimension of a sample	Dataset type
ORL	400	40	10	32×32	Face Images
UMIST	575	20	29	28×23	Face Images
Extended Yale	1774	28	63	32 × 32	Face Images
USPS	1100	10	110	16×16	Handwritten digits
COIL-20	360	20	18	51 × 51	Object Images

Universidad del País Vasco

Results

EXT - Yale	1 Sample		2 Samples		3 Samples	
Method	Т	U	Т	U	Т	U
FME	36.8%	40.7%	51.2%	54.7%	56.2%	59.9%
KFME	27.5%	29.3%	45.3%	46.5%	52.2%	56.3%
SDA	32.8%	35.0%	48.5%	50.7%	54.6%	58.2%
SDE	43.8%	46.0%	61.4%	60.5%	65.4%	67.1%
TR-FSDA	41.8%	45.2%	59.4%	58.6%	63.4%	64.0%
GLPP	25.5%	28.1%	41.0%	42.6%	49.7%	54.4%
SLDA	47.9 %	51.1%	63.4%	64.3%	67.1%	69.7%
ISDA	47.9 %	51.1%	63.3%	63.9%	67.2%	69.4%
JSLDE	46.4%	49.4%	65.4%	67.0%	68.8%	71.9%

Universidad del País Vasco Unibertsitatea

eman ta zabal zazu

Results

UMIST	1 Sample		2 Samples		3 Samples	
Method	Т	U	Т	U	Т	U
FME	37.8%	60.2%	45.2%	72.7%	51.4%	87.5%
KFME	39.3%	58.8%	48.7%	72.5%	57.0%	87.1%
SDA	39.6%	60.1%	57.3%	79.1%	63.0%	84.4%
SDE	40.1%	65.0%	51.0%	78.9%	58.9%	82.4%
TR-FSDA	38.3%	57.5%	46.7%	68.1%	53.3%	77.3%
GLPP	40.3%	59.7%	57.1%	78.7%	65.0%	88.3%
SLDA	37.6%	57.8%	47.8%	74.9%	58.0%	79.8%
ISDA	38.1%	59.3%	47.5%	75.1%	57.6%	80.6%
JSLDE	44.2%	72.3%	53.3%	80.0%	63.0%	89.2 %

Figure: Recognition accuracy vs. feature dimension obtained with the EXT Yale and Coil-20 datasets (test evaluation).

Figure: t-SNE visualization of the ORL dataset. (a) Face images using their original features. (b) Face images using their projection obtained by JSLDE.

Universidad del País Vasco ICPR20 ESth INTERNATIONAL CONFERENCE DN PATTERN RECOGNITION

- We introduced a framework that is able to jointly estimate the soft labels and linear embedding for a semi-supervised context.
- The iterative criterion enforces the smoothness of both the predicted labels and the linear projection of the data samples.

Thanks for your attention

Abdullah BARADAAJI, PhD Candidate UPV/EHU (Spain) Baradaaji.abdu@gmail.com