

25th International Conference on Pattern Recognition

Data Normalization for Bilinear Structures in High-Frequency Financial Time-series

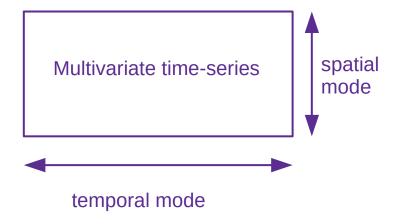
Dat Thanh Tran, Moncef Gabbouj and Alexandros Iosifidis

Main Contributions

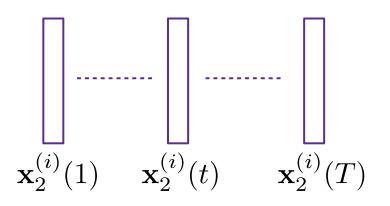
- We proposed a learnable data-normalization method for multivariate time-series
- This method takes into account the tensor nature of multivariate time-series
- Outperform other normalization schemes in stock movement prediction

Bilinear Normalization (BiN)

- Designed for multivariate time-series, which are tensors (2D matrices)
- Normalize multivariate time-series along both the temporal and spatial/channel/feature modes.



Temporal Mode Normalization



(t) denotes the index of the slice

subscript 2 denotes the slices in temporal mode

$$\bar{\mathbf{x}}_{2}^{(i)} = \operatorname{mean}(\mathbf{x}_{2}^{(i)}(t)), \forall t = 1, \dots, T$$

$$\sigma_2^{(i)} = \operatorname{std}(\mathbf{x}_2^{(i)}(t)), \forall t = 1, \dots, T$$

mean of the slices in temporal mode

std of the slices in temporal mode

$$\mathbf{Z}_{2}^{(i)} = \left(\mathbf{X}^{(i)} - \bar{\mathbf{x}}_{2}^{(i)} \mathbf{1}_{T}^{\mathrm{T}}\right) \oslash \left(\sigma_{2}^{(i)} \mathbf{1}_{T}^{\mathrm{T}}\right)$$

$$\tilde{\mathbf{X}}_{2}^{(i)} = \left(\gamma_{2} \mathbf{1}_{T}^{\mathrm{T}}\right) \odot \mathbf{Z}_{2}^{(i)} + \beta_{2} \mathbf{1}_{T}^{\mathrm{T}}$$

scale and shift with
$$\,\gamma_2\,$$
 and $\,eta_2\,$

Spatial Mode Normalization

$$\mathbf{x}_{1}^{(i)}(1)$$
 $\mathbf{x}_{1}^{(i)}(d)$ $\mathbf{x}_{1}^{(i)}(D)$ $\mathbf{x}_{1}^{(i)}(D)$

subscript 1 denotes the slices in spatial/channel mode

$$\bar{\mathbf{x}}_1^{(i)} = \operatorname{mean}(\mathbf{x}_1^{(i)}(d)), \forall d = 1, \dots, D$$

mean of the slices in temporal mode

$$\sigma_1^{(i)} = \operatorname{std}(\mathbf{x}_1^{(i)}(d)), \forall d = 1, \dots, D$$

std of the slices in temporal mode

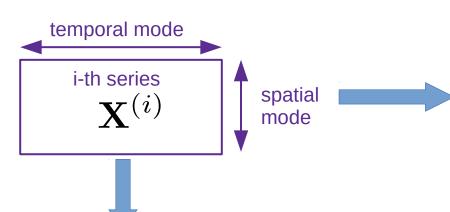
$$\mathbf{Z}_1^{(i)} = \left(\mathbf{X}^{(i)} - \mathbf{1}_D(\bar{\mathbf{x}}_1^{(i)})^{\mathrm{T}}\right) \oslash \left(\mathbf{1}_D(\sigma_2^{(i)})^{\mathrm{T}}\right)$$

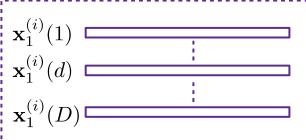
Z-score normalization step

$$\tilde{\mathbf{X}}_{1}^{(i)} = \left(\mathbf{1}_{D} \gamma_{1}^{\mathrm{T}}\right) \odot \mathbf{Z}_{1}^{(i)} + \mathbf{1}_{D} \beta_{1}^{\mathrm{T}}$$

————— scale and shift with $\,\gamma_1\,$ and $\,eta_1\,$

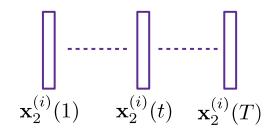
Tampere University





 $\bar{\mathbf{x}}_{1}^{(i)} = \operatorname{mean}(\mathbf{x}_{1}^{(i)}(d)), \forall d = 1, \dots, D$ $\sigma_{1}^{(i)} = \operatorname{std}(\mathbf{x}_{1}^{(i)}(d)), \forall d = 1, \dots, D$ $\mathbf{Z}_{1}^{(i)} = (\mathbf{X}^{(i)} - \mathbf{1}_{D}(\bar{\mathbf{x}}_{1}^{(i)})^{\mathrm{T}})(\mathbf{1}_{D}(\sigma_{2}^{(i)})^{\mathrm{T}})$ $\tilde{\mathbf{X}}_{1}^{(i)} = (\mathbf{1}_{D}\gamma_{1}^{\mathrm{T}}) \odot \mathbf{Z}_{1}^{(i)} + \mathbf{1}_{D}\beta_{1}^{\mathrm{T}}$

spatial mode normalization



$$\bar{\mathbf{x}}_{2}^{(i)} = \operatorname{mean}(\mathbf{x}_{2}^{(i)}(t)), \forall t = 1, \dots, T$$

$$\sigma_{2}^{(i)} = \operatorname{std}(\mathbf{x}_{2}^{(i)}(t)), \forall t = 1, \dots, T$$

$$\mathbf{Z}_2^{(i)} = \left(\mathbf{X}^{(i)} - \bar{\mathbf{x}}_2^{(i)} \mathbf{1}_T^{\mathrm{T}}\right) \left(\sigma_2^{(i)} \mathbf{1}_T^{\mathrm{T}}\right)$$

$$\tilde{\mathbf{X}}_{2}^{(i)} = \left(\gamma_{2} \mathbf{1}_{T}^{\mathrm{T}}\right) \odot \mathbf{Z}_{2}^{(i)} + \beta_{2} \mathbf{1}_{T}^{\mathrm{T}}$$

temporal mode normalization

$$\tilde{\mathbf{X}}^{(i)} = \lambda_1 \tilde{\mathbf{X}}_1^{(i)} + \lambda_2 \tilde{\mathbf{X}}_2^{(i)}$$

- Problem: stock movement prediction
- Horizon corresponds to different time in the future (H=10, 20, 50)
- F1 as the main performance measure (imbalanced dataset)

Models	Accuracy %	Precision %	Recall %	F1 %
Prediction Horizon $H = 10$				
CNN[25]	-	50.98	65.54	55.21
LSTM[26]	-	60.77	75.92	66.33
C(BL) [1]	82.52	73.89	76.22	75.01
DeepLOB [2]	84.47	84.00	84.47	83.40
DAIN-MLP [20]	-	65.67	71.58	68.26
DAIN-RNN [20]	-	61.80	70.92	65.13
C(TABL) [1]	84.70	76.95	78.44	77.63
BN-C(TABL)	79.20	68.48	72.36	66.87
BiN-C(TABL)	86.87	80.29	81.84	81.04
Prediction Horizon $H = 20$				
CNN[25]	-	54.79	67.38	59.17
LSTM[26]	-	59.60	70.52	62.37
C(BL) [1]	72.05	65.04	65.23	64.89
DeepLOB [2]	74.85	74.06	74.85	72.82
DAIN-MLP [20]	-	62.10	70.48	65.31
DAIN-RNN [20]	-	59.16	68.51	62.03
C(TABL) [1]	73.74	67.18	66.94	66.93
BN-C(TABL)	70.70	63.10	63.78	63.43
BiN-C(TABL)	77.28	72.12	70.44	71.22
Prediction Horizon $H = 50$				
CNN[25]	-	55.58	67.12	59.44
LSTM[26]	1	60.03	68.58	61.43
C(BL) [1]	78.96	77.85	77.04	77.40
DeepLOB [2]	80.51	80.38	80.51	80.35
DAIN-MLP [20]	-	-	-	-
DAIN-RNN [20]	-	-	-	-
C(TABL) [1]	79.87	79.05	77.04	78.44
BN-C(TABL)	77.16	75.70	75.04	75.34
BiN-C(TABL)	88.54	89.50	86.99	88.06

Thank You for listening!