

Wavelet Attention Embedding Networks for Video Super-Resolution

Young-Ju Choi¹, Young-Woon Lee², and Byung-Gyu Kim*¹

¹Dept. of IT Engineering, Sookmyung Women's University, Seoul, Korea ²Dept. of Computer Science and Engineering, Sunmoon University, A-san, Korea

1. Introduction

MOTIVATION

- ✓ In video super-resolution (VSR), the frames contain different type of information including low and high-frequency components.
- ✓ However, the previous methods handled the features identically or simply combined the edge map so the high resolution (HR) output image lack meaningful information.
- ✓ The compensated feature generated by **pixel-based frame alignment** can **involve some discontinuous regions**.
- ✓ This inaccurate motion alignment and compensation cause the HR output containing visual artifacts.

APPROACH

- ✓ In this paper, we propose the **wavelet attention embedding networks (WAEN)** consisting of **two embedding modules** to jointly exploit the spatio-temporal dependencies for VSR.
- ✓ One module is the wavelet embedding network (WENet) for spatial features, and the other one is the attention embedding network (AENet) for temporal features.
- ✓ Our WAEN can enhance low-frequency features and recover high-frequency details by utilizing appropriate spatial and temporal information.

Fig. 1. The network architecture of the proposed WAEN.

- \checkmark Given 2N + 1 consecutive low resolution (LR) input frames LR_{input} , our WAEN has a purpose of estimating a HR center frame SR_t .
- ✓ We designed **two types of pipeline structure** (parallel and serial).
- ✓ In the **parallel structure**, input frames are fed to both WENet and AENet.
- ✓ In the serial structure, input frames are fed to only WENet, and the output features of WENet become the input of AENet.
- ✓ The output features after the embedding network pass through a reconstruction (with residual blocks) and up-sampling (with depth-to-space transformation) module.

- ✓ The WENet is operated as a **spatial feature extractor** of individual low and high-frequency information based on **2-D Haar discrete** wavelet transform (DWT).
- ✓ Through separating each given feature to four sub-band wavelet feature by DWT, more precise and sharp features can be extracted.

Fig. 3. The structural details of attention embedding net.

- \checkmark Our AENet is based on the **temporal and spatial attention (TSA) module** in [6].
- ✓ In neighboring frames with different degrees of motion information, there is a high probability that necessary information for the reference frame exists.
- ✓ By utilizing the relationship between frames, discontinuities in output feature can be reduced rather than extracting explicit or implicit motion feature.

ÓDATASETS AND IMPLEMENTATION DETAILS

- ✓ We use Vimeo-90K dataset for training and Vid4 dataset for testing.
- ✓ For evaluation, we use **peak signal-to-noise ratio (PSNR)**.
- ✓ The network takes 7 frames (3 channel patches of 64×64 for training).
- $\checkmark \quad \text{The scale of SR was set to 4.}$

QUANTITATIVE COMPARISON RESULTS

Table 1. Quantitative comparison on Vid4 for 4× video SR on Y (luminance) channel. Red and Blue indicates the best and the second best performance, respectively.

Method	Bicubic	SOF-VSR [21]	WDVR [8]	FRVSR [3]	WAEN P (Ours)	WAEN S (Ours)
Params.	-	1.0M	1.2M	5.1M	9.5M	9.6M
Calendar	20.45	21.56	23.47	23.02	23.63	23.81
City	25.22	26.24	27.36	27.93	27.48	27.61
Foliage	23.57	24.65	25.84	26.26	25.89	26.00
Walk	26.27	28.41	30.11	29.61	30.16	30.37
Average	23.88	25.21 (26.00)	26.69 (26.62)	26.71 (26.69)	26.79	26.95

Table 2. Quantitative comparison on Vid4 for $4 \times$ video SR on **RGB channel**. Red and Blue indicates the best and the second best performance, respectively.

Method	Bicubic	SOF-VSR [21]	WDVR [8]	FRVSR [3]	WAEN P (Ours)	WAEN S (Ours)
Params.	-	1.0M	1.2M	5.1M	9.5M	9.6M
Calendar	18.96	19.97	21.75	21.37	21.87	22.04
City	23.75	24.76	25.84	26.39	25.96	26.08
Foliage	22.21	23.25	24.44	24.84	24.47	24.59
Walk	24.94	27.07	28.74	28.24	28.79	28.99
Average	22.47	23.76	25.19	25.21	25.27	25.42

- ✓ We used Charbonnier penalty function for loss function.
- \checkmark We trained with setting the size of **mini-batch** to **20**.
- ✓ We used Adam optimizer.
- ✓ We initially set learning rate to 4×10^{-4} .

Table 3. Adopted modules in our WAEN on Vid4 for $4 \times$ video SR.

Method Params.	EDVR TSA [6] 5.0M	WENet 8.5M	WAEN P (Ours) 9.5M	WAEN S (Ours) 9.6M
WENet	X	V	V	V
AENet	V	х	х	V
Reconstruction	V	V	V	V
Y	26.75	26.67	26.79	26.95
RGB	25.24	25.15	25.27	25.42

- ✓ Our WAEN S shows the best performance and WAEN P is in second place on average in both Y and RGB channels.
- ✓ From the results about adopted modules, we can explain that combination of two feature extractors produces better performance than using a single module.

Fig. 4. Visual results on Vid4 for 4× video SR. Zoom in to see better visualization.

3. Experimental Results

- ✓ In this paper, we have proposed a wavelet attention embedding network for VSR.
- ✓ The proposed model extracts the enhanced spatial features by handling four different components individually in wavelet embedding network.
- ✓ The effective temporal features can be extracted by generating attention map with neighboring frames in attention embedding network.
- ✓ The WAEN can derive the meaningful feature for more accurate HR reconstruction by applying a powerful spatio-temporal structure.
- ✓ We compared the proposed models with other recent state-of-the-art VSR approaches and the results demonstrated that our proposed method could obtain better quality of SR.

Thank You