

**Department of Electronics and Information Systems** research groups AIDA - DaMBi

# Graph Approximations to Geodesics on Metric Graphs

Robin Vandaele, Yvan Saeys, and Tijl De Bie













### Proximity graphs are often used to approximate geodesics

- *k***NN**: connect each point to its *k* closest neighbors
- **Rips/unit disk:** connect every pair of points within distance ε





### Proximity graphs are often used to approximate geodesics

- Used for various dimensionality reductions
  - Laplacian Eigenmaps
  - Locally Linear Embedding
  - **ISOMAP**
  - Maximum Variance Unfolding
  - Local Tangent Space Alignment
  - . . .
- More recently as intermediate representation for topological inference (after initial dimensionality reduction such as PCA, diffusion maps. ...)

Model = Metric Graph

E.g., Cell Trajectory Inference





group

- H1975  $\circ$
- H1975,H2228,HCC827
- H2228
- HCC827

### **Prior theory**

[1] M. Bernstein, V. D. Silva, J. C. Langford, and J. B. Tenenbaum, "Graph approximations to geodesics on embedded manifolds," 2000.

- Mainly serves as a theoretical justification of the ISOMAP dimensionality reduction
- Provides conditions under which shortest path distances in proximity graphs are close to true geodesics
- Restricted to smooth submanifolds of  $\mathbb{R}^n$ .



### **Prior theory – the issues**

- Restricted to smooth submanifolds of  $\mathbb{R}^n \rightarrow$  no singularities allowed
- Stringent conditions: all local patterns must be approximated well







Proximity graph fails to capture local
'wiggled' pattern
→ Violates conditions in [1]

Captures global cyclic pattern correctly

## Our work – new and more flexible characteristics for metric graphs

**Definition 3.** Given a connected metric graph M. For any  $\epsilon > 0$  we define the branch separation  $s_{\epsilon}(M) \in \mathbb{R}^+ \cup \{\infty\}$  of M at resolution  $1/\epsilon$  as

$$s_{\epsilon}(M) \coloneqq \sup \{s \in \mathbb{R} : ||x - y|| < s \implies d_M(x, y) \leq \epsilon$$
.

 $1/\epsilon$  and  $1/\epsilon' \in \mathbb{R}^+ \cup \{\infty\}$  as

 $\lambda_{\epsilon',\epsilon}(M) \coloneqq \sup \{\lambda \in$ 

Specifies the scale of interest (solves flexibility)

Constrains from 'how close' we look at the data (necessary for extension to singularities)

**Theorem 3.** Let M be a connected metric graph in  $\mathbb{R}^d$  and let X be a finite set of data points in M. Suppose a graph G = (X, E) is given, defining the following three thresholds:

- 1)  $||x y|| \ge \epsilon'$  for all  $\{x, y\} \in E$ ,
- 2)  $||x y|| < s_{\epsilon}(M)$  for all  $\{x, y\} \in E$ , with  $\epsilon > 0$ ,

3) for all  $x, y \in X$  with  $||x - y|| \le \tau$ , we have  $\{x, y\} \in E$ .

If for  $0 < 4\delta < \tau$ , X satisfies the  $\delta$ -sampling condition, *i.e.*, for every  $m \in M$  there is  $x \in X$  with  $d_M(m, x) \leq \delta$ , then for all  $x, y \in M$ 

 $\lambda_{\epsilon,\epsilon'}(M)d_M(x,y) \le d_G(x,y) \le (1+4\delta/\tau)d_M(x,y).$ (1)



**Definition 4.** Given a connected metric graph M. For any  $0 \le \epsilon' < \epsilon$  we define the linearity of M between resolutions

$$\in \mathbb{R} : \epsilon' \leq d_M(x, y) \leq \epsilon \implies$$
$$\lambda d_M(x, y) \leq ||x - y|| \}.$$

#### Proof in paper

### References

[2] Robin Vandaele, Yvan Saeys, and Tijl De Bie. "Mining Topological Structure in Graphs through Forest Representations," Journal of Machine Learning Research, 21(215):1–68, 2020.

Topological inference of metric graphs through proximity graphs

[3] Robin Vandaele. "Topological Data Analysis of Metric Graphs for Evaluating Cell Trajectory Data Representations," Master's thesis, Ghent University, 2020.

- Extension of current theoretical results (to probabilistic results and noise)
- Applications for evaluating cell trajectory data representation quality

[4] Robin Vandaele. "Topological Inference in Graphs and Images," Doctoral thesis, Ghent University, 2020.

Further applications of current results for comparing geometric patterns.







