

中国科学院重庆绿色智能技术研究院

Chongqing Institutes of Green and Intelligent Technology, Chinese Academy of Science

MCFL: Multi-label Contrastive Focal Loss for Pedestrian Attribute Recognition

Xiaoqiang Zheng^{1,2}, Zhenxia Yu¹, Lin Chen^{2*}, Fan Zhu², Shilog Wang¹

¹Chengdu University of Information Technology, China ²Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science

1

Corresponding author: Lin Chen, chenlin@cigit.ac.cn

- **3. Experiments**
- 4. Conclusion

- **3. Experiments**
- 4. Conclusion

1. Background and motivation: Introduction

- Pedestrian Attribute Recognition is a key element in video surveillance, aiming at predict a group of attributes to describe the characteristic of human
- Proving useful clues for smart video analysis
 - Person Retrieval
 - Human Identification
 - Customer Analysis

hs-BlackHair hs-Glasses hs-BlackHair hs-Glasses hs-BlackHair hs-LongF hs-Glasses ub-Cotton hs-Glasses ub-Shirt ub-Jacket ub-TShirt hs-BlackH ub-ShortSleeve lb-LongTrousers ub-Cotton ub-Tshirt lb-LongTrousers lb-TightTrousers ub-Swea lb-LongTrousers shoes-Casual lb-TightTrousers lb-LongTrousers shoes-Sport shoes-Boots ub-Ves shoes-Leather attach-Backpack shoes-Boots shoes-Leather attach-SingleShoulderBag attach-Other lb-TightTrouser	Male Age31-45 BodyNormal Customer hs-BlackHair hs-Glasses ub-ShortSleeve lb-LongTrousers shoes-Leather	Male Male Age 17-30 A-45 BodyNormal Ormal Customer Mer hs-BlackHair kHair hs-Glasses usces ub-Cotton Sleeve Ib-LongTrousers Yousers shoes-Casual eather attach-Backpack	Female Age17-30 BodyNormal Customer hs-LongHair hs-BlackHair hs-Glasses ub-Cotton lb-TightTrousers shoes-Boots	Male Age17-30 BodyNormal Customer hs-BlackHair hs-Glasses ub-Shirt ub-Tshirt lb-LongTrousers shoes-Leather	Age31-45 BodyNormal Customer hs-BlackHair hs-Glasses ub-Jacket lb-LongTrousers shoes-Sport attach-SingleShoulderBag	Female Age17-30 BodyFat Customer hs-BlackHair ub-TShirt lb-TightTrousers shoes-Boots attach-Other	Female Age31-45 BodyNorm Clerk hs-LongHa hs-BlackHa ub-Sweate ub-Vest lb-TightTrous	al ir ir r sers
---	--	---	---	---	---	---	---	-----------------------------

1. Background and motivation: Introduction

- Deep learning based algorithms have been proposed and achieved remarkable results for pedestrian attributes recognition.
- However, it is still a challenging work.

Pose Variation

Occlusion

- **3. Experiments**
- 4. Conclusion

2. The proposed loss function: MCFL

- Multi-label Contrastive Focal Loss(MCFL), integrating multi-label focal loss and contrastive loss simultaneously.
- Focusing on the difficult and error-prone positive attributes.
- Enlarging the discriminate gap between positive and negative samples in multi-label attributes learning.

Siamese neural network

2. The proposed loss function: MCFL

> Multi-label Contrastive Focal Loss

• Multi-label Focal Loss:

$$L_i^p = -\mathbf{sw}_i (1 - Pt_i) \mathbf{y}_i log(Pt_i)$$
$$L_i^n = -\mathbf{sw}_i Pt_i (1 - \mathbf{y}_i) log(1 - Pt_i)$$
$$\mathbf{sw}_i = exp(\mathbf{y}_i (1 - \frac{\sum_{i=1}^N \mathbf{y}_i}{N}) + (1 - \mathbf{y}_i) \frac{\sum_{i=1}^N \mathbf{y}_i}{N})$$

Multi-label Contrastive Loss

2. The proposed loss function: MCFL

Multi-label Contrastive Focal Loss

$$L_{intra_p} = \mathbf{w}^p L^p_a (\frac{1}{S_p + eps} + \alpha)$$

$$L_{intra_n} = \mathbf{w}^n L_b^n \left(\frac{1}{S_n + eps} + \beta\right)$$

$$L_{inter_p} = \mathbf{w}^d (\sum_{i=a}^b L_i^p) (S_d + \alpha)$$

$$L_{inter_n} = \mathbf{w}^d (\sum_{i=a}^b L_i^n) (S_d + \beta)$$

 $L_{total} = L_{intra_p} + L_{intra_n} + L_{inter_p} + L_{inter_n}$

- **3. Experiments**
- 4. Conclusion

Pedestrian multi-attribute recognition: Following the evaluation

metrics defined

$$mA = \frac{1}{2N} \sum_{i=1}^{L} \left(\frac{TP_i}{P_i} + \frac{TN_i}{N_i} \right)$$

$$Accuracy = \frac{1}{N} \sum_{i=1}^{L} \frac{|Y_i \cap f(x_i)|}{|Y_i \cup f(x_i)|} \quad Recall = \frac{1}{N} \sum_{i=1}^{L} \frac{|Y_i \cap f(x_i)|}{|Y_i|}$$

$$Precision = \frac{1}{N} \sum_{i=1}^{L} \frac{|Y_i \cap f(x_i)|}{|f(x_i)|} \qquad F1 = \frac{2 \times (Precision \times Recall)}{Precision + Recall}$$

- **Richly Annotated Pedestrian (RAP)** dataset: is one of the few large-scale datasets containing 41,585 samples annotated with 51attributes.
- Totally 33,268 images are used for training and the rest 8,317 images are used for testing.

Methods	BackBone	mA /	Acc	Prec	Rec	F 1
HPNet(ICCV17) [19]	InceptionNet	76.12 (65.39	77.33	78.79	78.05
LGNet(BMVC18) [18]	InceptionV2	78.68 (68.00	80.36	79.82	80.09
PGDM(ICME18) [11]	CaffeNet	74.31 (64.57	78.86	75.90	77.35
JLPLS-PAA(TIP19) [29]	_	81.25 (67.91	78.56	81.45	79.98
RA(AAAI19) [35]	InceptionV3	81.16 -	_	79.45	79.23	79.34
AAP(AAAI19) 5	ResNet50	81.42 (68.37	81.04	80.27	80.65
ALM(ICCV19) 30	BNInception	<u>81.87</u> (68.17	74.71	86.48	80.16
StrongBaseline(2020) [8]	ResNet50	80.52	68.44	79.91	80.64	79.89
MCFL(ours)	ResNet50	82.06	69.01	77.47	84.91	81.02

PETA [2]: The PETA dataset is composed of 10 small pedestrian re-identification datasets. It consists of 19,000 images including 8,705 people. Following the default setting, the dataset is randomly partitioned into 9500 for training, 1900 for validation, and 7600 for testing, meanwhile, 35 binary attributes are evaluated in experiments.

Methods	BackBone	mA	Acc	Prec	Rec	F1
HPNet(ICCV17) [19]	InceptionNet	81.77	76.13	84.92	83.24	84.07
PGDM(ICME18) [T1]	CaffeNet	82.97	78.08	86.86	84.68	85.76
RA(AAAI19) [35]	InceptionV3	86.11	_	84.69	88.51	86.56
MsVAA(ECCV18) [22]	ResNet101	84.59	78.56	86.79	86.12	86.46
JLPLS-PAA(TIP19) [29]	_	84.88	79.46	87.42	86.33	86.87
MT-CAS(ICME20) [33]	ResNet50	83.17	78.78	87.49	85.35	86.41
StrongBaseline(2020) [8]	ResNet50	85.19	79.14	87.11	86.18	86.36
MCFL(ours)	ResNet50	86.84	78.78	83.68	89.97	86.71

PA100K : The PA-100K dataset is collected real outdoor surveillance scenarios from 598 cameras, it is the largest pedestrian attribute dataset so far containing 100,000 images. The whole dataset is randomly divided into training and testing with the ratio of 9:1. 26 binary attributes are evaluated for each image.

Methods	BackBone	mA	Acc	Prec	Rec	F1
HPNet(ICCV17) [19]	InceptionNet	74.21	72.19	82.97	82.09	82.53
LGNet(BMVC18) [18]	InceptionV2	76.96	75.55	86.99	83.17	85.04
PGDM(ICME18) [11]	CaffeNet	74.95	73.08	84.36	82.24	83.29
AAP(AAAI19) 5	ResNet50	80.56	78.30	89.49	84.36	86.85
ALM(ICCV19) [30]	BNInception	80.68	77.08	84.21	88.84	86.46
MT-CAS(ICME20) [33]	ResNet50	77.20	78.09	88.46	84.86	86.62
StrongBaseline(2020) [8]	ResNet50	80.50	78.84	87.24	87.12	86.78
MCFL(ours)	ResNet50	81.11	79.01	86.67	88.15	87.41

	Attributes	Male	Age17-30	Body-Normal	Box	CasualShoes	Short-hair
61	Ground-truth	-	~	×	~	-	-
	StrongBaseline	1	*	×	*	*	×
3.	Ours	-	*	×	~	~	-
	Attributes	Female	Age31-45	Body-Normal	HandBag	CasualShoes	LongHair
-	Ground-truth	×	1	×	×	×	1
	StrongBaseline	-	~	*	*	~	-
	Ours	 Image: A set of the set of the	1		1		

3. Experiments: Ablation Study

• Compared with the conventional BCE loss function, the proposed MCFL further improves mA and F1 values by 1.24% and 0.48% over MFL, achieving the highest mA, Rec, and F1 among the tested models

TAE	BLE	IV:	Ablation	study	on	RAP	dataset.
-----	-----	-----	----------	-------	----	-----	----------

Methods	mA	Acc	Prec	Rec	F1
ResNet50+BCE	80.11	67.92	79.43	80.42	79.55
ResNet50+MFL	80.82	69.33	80.30	80.79	80.54
ResNet50+MCFL(ours)	82.06	69.01	77.47	84.91	81.02

• The best performance can be achieved when setting α =1.5 and β =1, these values are used in our testing experiments

Fig. 6: The impact of α is visualized in terms of mA

Fig. 7: The impact of β is visualized in terms of mA

4. Conclusion

- We introduced a method with novel multi-label contrastive focal loss(MCFL) function to improve PAR performance.
- This proposed MCFL separates the losses of positive and negative attributes in order to emphasize the hard samples from minority class. Meanwhile, the multi-label contrastive loss is proposed to force CNNs to extract more discriminative features.
- Experiments results demonstrate the proposed method outperforms other state-of-the-art methods and can achieve better prediction results on test datasets.

中国科学院重庆绿色智能技术研究院。

Chongqing Institutes of Green and Intelligent Technology, Chinese Academy of Sciences

THANKS?