Multiscale Attention-Based Prototypical Network For Few-Shot
Semantic Segmentation

Yifei Zhang'", Désiré Sidibé?, Olivier Morel', Fabrice Meriaudeau’

'ERL VIBOT CNRS 6000, ImViA, Universite Bourgogne Franche Comté, 71200, Le Creusot, France
2Université Paris-Saclay, Univ Evry, IBISC, 91020, Evry, France

ICPR 2020, Milan, Italy

UNIVERSITE st 5Y Ory PARIS-SACLAY

BOURGOGNE FRANCHE-COMTE

.\ . - = ®
~vvr1 universite
x"ﬁf‘&



ImVIA UBFC Ry | Kawis université (SRR

UNIVERSITE vr PARIS-SACLAY

BOURGOGNE FRANCHE-COMTE

_ Introduction and motivation on few-shot segmentation
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Introduction and motivation

Few-shot semantic segmentation aims at
generalizing the segmentation ability of the

model to new categories given only a few
labeled samples.
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Figure 1: An overview of the proposed method (MAPnet).
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Proposed model
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Figure 2: lllustration of the proposed method (MAPnet)
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Experiments

Methods | -shot S-shot
Pascal-5 Pascal-5 Pascal-5 Pascal-5- Pascal-5 Pascal-5 Pascal-5 Pascal-5- Mean
[-NN 25.3 44.9 41.7 18.4 | 345 53.0 46.9 256 | 40.0
LogReg 26.9 42.9 37.1 18.4 35.9 51.6 44.5 25.6 39.3
OSLSM (23] 33.6 55.3 40.9 33.5 35.9 58.1 42.7 39.1 43.9
co-FCN [24] 36.7 50.6 449 32.4 37.5 50.0 44.1 33.9 41.4
SG-One [29] 40.2 58.4 48.4 38.4 41.9 58.6 48.6 394 47.1
PANet [30] 42.3 58.0 51.1 41.2 51.8 64.6 59.8 46.5 53.7
MAPnet 42.9 58.3 48.8 42.6 51.6 65.1 58.4 48.8 56.0

Table 1: Results of 1-way 1-shot and 1-way 5-shot semantic segmentation on PASCAL-5! using mean-loU(%) metric.

Mehtods I-shot  5-shot A 1 —— Wio ABG
co-FCN [24] 60.1 60.2 0.1 '
OSLSM [23] 613 615 02
MDL [26] 63.2 63.7 0.5 y o
PL+SEG [25] 61.2 62.3 1.1 4
AMP-2+FT [27] 62.2 63.8 1.6 -
SG-One [29] 63.1 659 2.8 |
PANet [30] 66.5 70.7 4.2 . —
M APnet 66.7 71.8 5.1
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Figure 3: Training loss of models with and
without attention-based gating (ABG) for 1-way
1-shot segmentation.

Table 2: Results of 1-way 1-shot and 1-way 5-shot
semantic segmentation using binary-loU(%) metric.
A denotes the difference between 1-shot and 5-shot.
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Experiments

Class | Support Image

PASCAL-5' dataset

Dataset Test classes Sheep
—O*
Pascal-H acroplane, bicycle, bird, boat, bottle

Pascal-51 bus, car, cat, chair, cow
Pascal-52 diningtable, dog, horse, motorbike, person
Pascal-5°  potted plant, sheep, sofa, train, tv/monitor

Aeroplane

Sofa

./

Chair

Figure 4: Qualitative results of our method for 1-way 1-shot on PASCAL-5!.
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Experiments

Test with weak annotations

Methods 5-shot
Scnbble Scribble | Bbox

PANet [30] 48.1 44 .8 45.1 55.7 54.6 52.8
M APnet 48.2 44 .1 45.7 56.0 53.5 53.7

Table 3: Evaluation results of using different types of annotations in mean-loU(%) metric.

Class Support Image Query GT Prediction

Train

Sheep
Figure 6: Qualitative results of our model using scribble and bounding box annotations for 1-way 5-shot setting.
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Conclusion and future work

Advantaqges:
_ The proposed method provides effective semantic guidance on the query

feature and adaptive information integration for an optimal pixel-wise
prediction.

_ Experiments on PASCAL-5! dataset show that our method achieves a
comparable accuracy with the state-of-the-art and faster convergence.

Disadvantages:
_ The distinction of the objects with similar characteristics, especially when these

objects are placed in an overlapping manner.
_ Limited capacity to recognize irregular objects and their boundary delineation.

Future work:
_ The integration of multimodal information in few-shot semantic segmentation
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Thank you!
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