Multiscale Attention-Based Prototypical Network For Few-Shot Semantic Segmentation

Yifei Zhang^{1*}, Désiré Sidibé², Olivier Morel¹, Fabrice Meriaudeau¹ ¹ERL VIBOT CNRS 6000, ImViA, Université Bourgogne Franche Comté, 71200, Le Creusot, France ²Université Paris-Saclay, Univ Evry, IBISC, 91020, Evry, France *Yifei.Zhang@u-bourgogne.fr

ICPR 2020, Milan, Italy

Introduction and motivation on few-shot segmentation Proposed model Experimental results Conclusion and future work

Few-shot semantic segmentation aims at generalizing the segmentation ability of the model to new categories given only a few labeled samples.

- Rich contextual information of labeled support images The integration of multiple similarity-guided
 - probability maps by attention mechanism

Introduction and motivation

Multiscale Attention-Based Prototypical Network For Few-Shot Semantic Segmentation

Figure 1: An overview of the proposed method (MAPnet).

Introduction and motivation on few-shot segmentation Proposed model Experimental results Conclusion and future work

Proposed model

Multiscale Attention-Based Prototypical Network For Few-Shot Semantic Segmentation

Figure 2: Illustration of the proposed method (MAPnet)

Introduction and motivation on few-shot segmentation Proposed model Experimental results

Conclusion and future work

Experiments

Methods	1-shot				5-shot					
	Pascal-5 ⁰	Pascal-5 ¹	Pascal-5 ²	Pascal-5 ³	Mean	Pascal-5 ⁰	Pascal-5 ¹	Pascal-5 ²	Pascal-5 ³	Mean
1-NN	25.3	44.9	41.7	18.4	32.6	34.5	53.0	46.9	25.6	40.0
LogReg	26.9	42.9	37.1	18.4	31.4	35.9	51.6	44.5	25.6	39.3
OSLSM [23]	33.6	55.3	40.9	33.5	40.8	35.9	58.1	42.7	39.1	43.9
co-FCN [24]	36.7	50.6	44.9	32.4	41.1	37.5	50.0	44.1	33.9	41.4
SG-One [29]	40.2	58.4	48.4	38.4	46.3	41.9	58.6	48.6	39.4	47.1
PANet [30]	42.3	58.0	51.1	41.2	48.1	51.8	64.6	59.8	46.5	55.7
MAPnet	42.9	58.3	48.8	42.6	48.2	51.6	65.1	58.4	48.8	56.0
Table 1. Results of 1-way 1-shot and 1-way 5-shot semantic segmentation on DASCAL-5i using mean-IoU(06) metric										

Table I. Results OF Freay

Mehtods	1-shot	5-shot	Δ
co-FCN [24]	60.1	60.2	0.1
OSLSM [23]	61.3	61.5	0.2
MDL [26]	63.2	63.7	0.5
PL+SEG [25]	61.2	62.3	1.1
AMP-2+FT [27]	62.2	63.8	1.6
SG-One [29]	63.1	65.9	2.8
PANet [30]	66.5	70.7	4.2
MAPnet	66.7	71.8	5.1

Table 2: Results of 1-way 1-shot and 1-way 5-shot semantic segmentation using binary-loU(%) metric. Δ denotes the difference between 1-shot and 5-shot.

Multiscale Attention-Based Prototypical Network For Few-Shot Semantic Segmentation

1	abat		1	F abat	
	-51101	anu	I-VVdy	3-5101	Sellid

Figure 3: Training loss of models with and without attention-based gating (ABG) for 1-way 1-shot segmentation.

and segmentation on rascal-s' using mean-loo(70) methe

Experiments

PASCAL-5ⁱ dataset

Dataset	Test classes
Pascal-5 ⁰	aeroplane, bicycle,
Pascal- 5^1	bus, car, cat, chair,
Pascal- 5^2	diningtable, dog, h
Pascal-5 ³	potted plant, sheep

Class

Sheep

bird, boat, bottle COW norse, motorbike, person o, sofa, train, tv/monitor

Aeroplane

Sofa

Chair

Support Image Query GT

Figure 4: Qualitative results of our method for 1-way 1-shot on PASCAL-5ⁱ.

Multiscale Attention-Based Prototypical Network For Few-Shot Semantic Segmentation

Prediction

Experiments

Test with weak annotations

Methods

PANet [30 MAPnet

Table 3: Evaluation results of using different types of annotations in mean-loU(%) metric.

Class

Train

Sheep

Multiscale Attention-Based Prototypical Network For Few-Shot Semantic Segmentation

S		1-shot	5-shot			
	Dense	Scribble	Bbox	Dense	Scribble	Bb
60]	48.1	44.8	45.1	55.7	54.6	52
t	48.2	44.1	45.7	56.0	53.5	53

Support Image

Query GT

Figure 6: Qualitative results of our model using scribble and bounding box annotations for 1-way 5-shot setting.

Prediction

DOX 2.8

J.I

Introduction and motivation on few-shot segmentation Proposed model Experimental results Conclusion and future work

Conclusion and future work

Advantages:

The proposed method provides effective semantic guidance on the query feature and adaptive information integration for an optimal pixel-wise prediction. Experiments on PASCAL-5ⁱ dataset show that our method achieves a comparable accuracy with the state-of-the-art and faster convergence.

Disadvantages:

The distinction of the objects with similar characteristics, especially when these objects are placed in an overlapping manner. Solution Content of the image of the image.

Future work:

Multiscale Attention-Based Prototypical Network For Few-Shot Semantic Segmentation

The integration of multimodal information in few-shot semantic segmentation

Thank you!

