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Background

The key to address the problem of fine-grained categorization is to learn
a discriminative representation that captures the subtle difference of
similar class.

Existing methods generate high-level feature mostly by performing
global first-order pooling, such as global average pooling (GAP),
global max pooling (GMP).
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Li’s method(iSQRT) obtains an impressive result on fine-grained datasets.
Our MOFS model adopts this method as the second-order extractor.

Li, Peihua and Xie, Jiangtao and Wang, Qilong and Gao, Zilin

[1]Towards Faster Training of Global Covariance Pooling Networks by Iterative Matrix Square Root Normalization



Contribution

We proposed a multi-order feature
statistical method that integrates both
first-order and covariance statistics to build
strong representation.

Our method consistently outperforms the
state-of-the-art fine-grained method.
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The Multi-Order Feature Statistical model
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Sub-module A extracts high-level and mid-level first-order feature statistics by tow
branches with GAP and GMP layers respectively. Sub-module B obtain second-order extractor

statistics following iSQRT-COV method



Results

* No part or bounding box annotations
are used during training and testing.

* Compare to existing methods that only
extract first-order or higher-order
feature statistics, our approach with
different order pooling layers obtain a
higher accuracy on three datasets for
fine-grained.

Method Backbone Accuracy(%)
CUB-2M)-211 FGVC-Aircraft  Stanford-Cars
VGG-19 VGG-19 77.8 - 240
ResNet-50 ResNet-50 854 90.3 917
ResNet-101 ResNet-101 868 - 919
RA-CNN[2E] VGG-19 853 882 025
MA-CNN[6] VGG-19 6.5 800 o915
B-CHNN[16] VGG-16 841 841 913
Compact B-CNN[17] VGG-16 840 - -
Low-ran B-CNN[1E] VGG-16 542 873 Q0.9
Kernel-Activation[19]  WGG-16 853 H8.3 91.7
Kernel-Pooling[24] VGG-16 862 86.0 024
MG-CNN[6] VGG-19 826 86.6
RAM([29) ResNet-50 86.0
MAMC[30] ResNet-101 86.5 - 93.0
DFL-CNN[21] ResNet-50 874 91.7 EER|
DFL-CNN[21] VGG-16 874 920 038
NTS-Net[31] ResNet-50 7.5 ul4 939
ISQRT-COV[22] ResNet-50 881 90.0 928
ISQRT-COV[22] ResNet-101 BRT7 914 033
MOFS(ours) ResNet-50 BRB 917 94.7
MOFS(ours) ResNet-101 89.2 93.0 94.9




Ablation Study

For understanding the
importance of each branch and
model on the decision of
interest, we draw the attention
map by Grad-CAM method.

Accuracy(%)
Method
et shared  separate  MOFS
GAP 80.7 85.1 85.7
GMP 76.8 T8.7 81.1
GAP+GMP 83.2 84.3 86.2
ISQRT 87.8 88.0 88.0

GAP+GMP+ISQRT  87.7 87.9 88.8
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