Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings

D. De Gregorio¹, R. Zanella², G. Palli², L. Di Stefano³,

¹EYECAN.ai, ²DEI-UNIBO, ³DISI-UNIBO

ICPR, 2020

Overall Pipeline of LOOP

Framework that Leverages on a generic Object detector for Orientation Prediction.

Auto-generated Dataset from video sequence

Restricted camera movements leads to a controlled rigid transformation A between the two consecutive images I_i , I_{i+1} such that $I_{i+1} = AI_i$. The same rigid transformation A can be applied to each bounding box \check{b}_i present in the image I_i so as to obtain a new set of bounding box such that $\check{b}_{i+1} = A\check{b}_i$

How does LOOP work?

- Given an RGB image, LOOP produces a set of predictions $\Breve{y}_i = \{\Breve{b}_i, \theta_i, c_i\}$, where $\Breve{b}_i = \{x, y, w, h\} \in \mathbb{R}^4$ represents the coordinates of the **Oriented Bounding Box (OBB)** clockwise-rotated by an angle of θ_i and $c_i \in \mathbb{Z}^+$ is the object class.
- We leverage on a classical object detector, which outputs a set of simpler predictions $y_i = \{b_i, \hat{c}_i\}$, where $b_i = \{x, y, W, H\} \in \mathbb{R}^4$ represents the coordinates of the unoriented **Bounding Box (BB)** and $\hat{c}_i \in \mathbb{Z}^+$ encodes both the object class and the orientation information.

Oriented-to-Unoriented Bounding Boxes

The OOB angle θ_i is estimated as a classification task by simply quantizing the angular range into k bins and by expanding all the C categories into C' = kC new classes.

 f_{o2u} is the function used to convert the original object class c_i in the expanded class \hat{c}_i which encodes the object type and its quantized orientation.

$$f_{o2u}(c_i, \theta, \hat{\theta}) = c_i k + C_{\theta} = c_i k + \left| \theta/\hat{\theta} \right| = \hat{c}_i$$

Unoriented-to-Oriented Bounding Boxes

We retrieve the oriented prediction from the unoreinted one generated by the Object Detector using the decoding function

$$f_{u2o}(\hat{c}_i, \hat{\theta}) = \begin{cases} c_i = \left\lfloor \frac{\hat{c}_i}{k} \right\rfloor \\ \theta_i = \hat{\theta}_i \cdot (\hat{c} \mod k) \end{cases}$$

Experimental Dataset

We created a *Real* and a *Synthetic* dataset, with:

- 7155 auto-labeled images
- 12 objects divided into Textured and Untextured
- 15 tabletop scenes (3 on *homogeneous* background; 3 on *wood*; 3 on *black* and 5 on an high-clutter backgrounds)

Training and Test

- The Object Detector used in our tests is YOLOv3
- Several models $LOOP_{\hat{\theta}}$ are trained on different discretization angles $\hat{\theta}$
- ullet A model $LOOP_{10}^S$ was also trained with the synthetic dataset
- The models are tested on two scenes never seen in training, that we call Simple Scene (477 images) and Hard Scene (477 images)

Results

The mean average precision (mAP) computed for each model, across all objects, for the *Simple Scene*, *Hard Scene* and both.

Model	Simple	Hard	Overall
LOOP ₅	0.96	0.96	0.96
$LOOP_{10}$	0.99	0.98	0.99
$LOOP_{10}^{S}$	0.95	0.86	0.92
$LOOP_{20}$	0.95	0.97	0.96
$LOOP_{30}$	0.90	0.88	0.89
$LOOP_{45}$	0.69	0.70	0.69

Qualitative Evaluation

Proof-of-concept PickPlace

Supplementary Material Online

- Several runs of experiment are shown in the Video from the on-board and off-board cameras
- An open source implementation of the proposed method is available on GitHub

Thanks!