# Effective Deployment of CNNs for 3DoF Pose Estimation and Grasping in Industrial Settings 

D. De Gregorio ${ }^{1}$, R. Zanella ${ }^{2}$, G. Palli ${ }^{2}$, L. Di Stefano ${ }^{3}$,<br>${ }^{1}$ EYECAN.ai, ${ }^{2}$ DEI-UNIBO, ${ }^{3}$ DISI-UNIBO

ICPR, 2020

## Overall Pipeline of LOOP



Framework that Leverages on a generic Object detector for Orientation Prediction.

## Auto-generated Dataset from video sequence



Restricted camera movements leads to a controlled rigid transformation A between the two consecutive images $I_{i}, l_{i+1}$ such that $I_{i+1}=\mathrm{A} I_{i}$. The same rigid transformation $A$ can be applied to each bounding box $\breve{b}_{i}$ present in the image $l_{i}$ so as to obtain a new set of bounding box such that $\breve{b}_{i+1}=\mathrm{A} \breve{b}_{i}$

## How does LOOP work?

- Given an RGB image, LOOP produces a set of predictions $\breve{y}_{i}=\left\{\breve{b}_{i}, \theta_{i}, c_{i}\right\}$, where $\breve{b}_{i}=\{x, y, w, h\} \in \mathbb{R}^{4}$ represents the coordinates of the Oriented Bounding Box (OBB) clockwise-rotated by an angle of $\theta_{i}$ and $c_{i} \in \mathbb{Z}^{+}$is the object class.
- We leverage on a classical object detector, which outputs a set of simpler predictions $y_{i}=\left\{b_{i}, \hat{c}_{i}\right\}$, where $b_{i}=\{x, y, W, H\} \in \mathbb{R}^{4}$ represents the coordinates of the unoriented Bounding Box (BB) and $\hat{c}_{i} \in \mathbb{Z}^{+}$encodes both the object class and the orientation information.


## Oriented-to-Unoriented Bounding Boxes

The OOB angle $\theta_{i}$ is estimated as a classification task by simply quantizing the angular range into $k$ bins and by expanding all the $C$ categories into $C^{\prime}=k C$ new classes.

$f_{o 2 u}$ is the function used to convert the original object class $c_{i}$ in the expanded class $\hat{c}_{i}$ which encodes the object type and its quantized orientation.

$$
\left.f_{o 2 u}\left(c_{i}, \theta, \hat{\theta}\right)=c_{i} k+C_{\theta}=c_{i} k+\mid \theta / \hat{\theta}\right\rceil=\hat{c}_{i}
$$

## Unoriented-to-Oriented Bounding Boxes



We retrieve the oriented prediction from the unoreinted one generated by the Object Detector using the decoding function

$$
f_{u 2 o}\left(\hat{c}_{i}, \hat{\theta}\right)=\left\{\begin{array}{l}
c_{i}=\left\lfloor\left\lfloor\hat{c}_{i}\right\rfloor\right. \\
\theta_{i}=\hat{\theta}_{i} \cdot(\hat{c} \bmod k)
\end{array}\right.
$$

## Experimental Dataset

We created a Real and a Synthetic dataset, with:

- 7155 auto-labeled images
- 12 objects divided into Textured and Untextured
- 15 tabletop scenes (3 on homogeneous background; 3 on wood; 3 on black and 5 on an high-clutter backgrounds)

D. De Gregorio, R. Zanella, G. Palli, L. Di Stefano,


## Training and Test

- The Object Detector used in our tests is YOLOv3
- Several models $L O O P_{\hat{\theta}}$ are trained on different discretization angles $\hat{\theta}$
- A model $L O O P_{10}^{S}$ was also trained with the synthetic dataset
- The models are tested on two scenes never seen in training, that we call Simple Scene (477 images) and Hard Scene (477 images)


## Results

The mean average precision (mAP) computed for each model, across all objects, for the Simple Scene, Hard Scene and both.

| Model | Simple | Hard | Overall |
| :---: | :---: | :---: | :---: |
| LOOP $_{5}$ | 0.96 | 0.96 | 0.96 |
| LOOP $_{10}$ | $\mathbf{0 . 9 9}$ | $\mathbf{0 . 9 8}$ | $\mathbf{0 . 9 9}$ |
| LOOP $_{10}$ | 0.95 | 0.86 | 0.92 |
| LOOP $_{20}$ | 0.95 | 0.97 | 0.96 |
| LOOP $_{30}$ | 0.90 | 0.88 | 0.89 |
| LOOP $_{45}$ | 0.69 | 0.70 | 0.69 |

## Qualitative Evaluation


D. De Gregorio, R. Zanella, G. Palli, L. Di Stefano,

## Proof-of-concept PickPlace



## Supplementary Material Online

- Several runs of experiment are shown in the Video from the on-board and off-board cameras
- An open source implementation of the proposed method is available on GitHub


## Thanks!

