Directional Graph Networks with Hard Weight Assignments

Miguel Dominguez and Raymond Ptucha

Rochester Institute of Technology

Introduction

Soft vs Hard Assignment

Making Hard Assignments

Benchmark Datasets

(Wu et al. "3D ShapeNets: A Deep Representation for Volumetric Shapes." CVPR 2015.) [6] (Yi et al. "A Scalable Active Framework for Region Annotation in 3D Shape Collections." SIGGRAPH Asia 2016.) [8]

By Miguel Dominguez, advised by Dr. Raymond Ptucha

Pickup et al. "SHREC'14 track: Shape Retrieval of Non-Rigid 3D Human Models." EG3DOR 2014. [3]

Lian et al. "SHREC'11 track: shape retrieval on nonrigid 3D watertight meshes." EG3DOR 2011. [2]

Results

Network	MN40 (1k)	ShapeNet	SHREC'15
PointNet++ [4]	91.9%	85.1	94.1%
DGCNN [5]	92.9%	85.2	-
SpiderCNN [7]	92.4%	85.3	95.8%
PointCNN [1]	92.2%	86.1	-
HDGN (Ours)	93.9%	85.4	100%

Future Work

- We were able to reduce one source of excess complexity in point cloud networks while still retaining strong performance
- Focus on further reducing common point cloud network overhead:
 - Computing and storing graph structures
 - Efficiently aggregating neighbors that are not close in memory

Works Cited

- [1] Li et al. "PointCNN: Convolution on X-Transformed Points." NeurIPS 2018.
- [2] Lian et al. "SHREC'11 track: shape retrieval on non-rigid 3D watertight meshes." EG3DOR 2011.
- [3] Pickup et al. "SHREC'14 track: Shape Retrieval of Non-Rigid 3D Human Models." EG3DOR 2014.
- [4] Qi et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space." NIPS 2017.
- [5] Wang, et al. "Dynamic Graph CNN For Learning on Point Clouds." ACM Transactions on Graphics 2019.
- [6] Wu et al. "3D ShapeNets: A Deep Representation for Volumetric Shapes." CVPR 2015
- [7] Xu et al. "SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters." ECCV 2018.
- [8] Yi et al. "A Scalable Active Framework for Region Annotation in 3D Shape Collections." SIGGRAPH Asia 2016.)