Do not Treat Boundaries and Regions Differently: An Example on Heart Left Atrial Segmentation

Zhou Zhao Élodie Puybareau Nicolas Boutry Thierry Géraud

EPITA Research and Development Laboratory (LRDE), France zhou.zhao@lrde.epita.fr

January 15, 2021

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへ○

Zhou ZHAO (LRDE) January 15, 2021

Introduction

Cardiovascular diseases are the leading cause of death globally.

-- according to the World Health Organization (WHO).

Medical imaging

- Computed tomography (CT)
- Magnetic resonance imaging (MRI)
- Positron emission tomography (PET)
- Single photon emission computed tomography (SPECT)
- Ultrasound (US)

CT MRI

PET

SPECT

2 / 15

MRI: Great contrast between soft tissues and relatively high spatial resolutions.

Zhou ZHAO (LRDE) January 15, 2021

The difficulties of cardiac segmentation on the MR Images are shown as follow:

- Poor contrast
 - -between myocardium and surrounding structures
- Brightness
 - -in left ventricular/right ventricular cavities due to blood flow
- Non-homogeneous partial volume
 - -limited CMR resolution(1.5T, 3.0T...) along the long-axis
- Noise
 - -motion artifacts and heart dynamics
- Shape and intensity variability
 - -different patients and pathologies

Zhou ZHAO (LRDE)

Fully Convolutional Networks (FCN) and UNet

 using upsampling layers and combining the feature maps from lower to higher resolutions.

Main Issues

- the lack of precision regarding the boundaries of the segmented objects.
- the loss of small objects and small parts of objects.

Zhou ZHAO (LRDE) January 15, 2021 4 /

Loss Function: Dice and Cross-entropy (CE)

- CE: highly unbalanced problems.
- dice: difficulty dealing with very small structures.
- region-based.

There are three challenging problems applied on cardiac imaging:

- enlarging the receptive field of a CNN.
- improving the segmentation accuracy on small parts of objects.
- balancing the importance of the regions and the boundaries of objects.

Methodology

Architecture of our networks.

Zhou ZHAO (LRDE)

Attention Module. λ , λ' , β and β' as hyperparameters, which is trained like the convolutional kernel. They decrease the weight of the unimportant feature maps.

Zhou ZHAO (LRDE) January 15, 2021 7 / 15

Hybrid Loss

The hybrid loss consists of two parts: region loss and boundary loss.

Region Loss: $\ell_{R} = \ell_{CCF} + \ell_{SSIM} + \ell_{DC}$

• Categorical Cross Entropy (CCE)-pixel-level:
$$\ell_{\text{CCE}} = -\sum_{i=1}^{C} \sum_{a=1}^{H} \sum_{b=1}^{W} y_{(a,b)}^{i} \ln y_{*(a,b)}^{i}, --$$
multi-class classification and segmentation.

Structural Similarity (SSIM)-patch-level:

$$\ell_{\text{SSIM}} = 1 - ((2\mu_{\text{S}}\mu_{\text{G}} + \varepsilon_1)(2\sigma_{\text{SG}} + \varepsilon_2)) / ((\mu_{\text{S}}^2 + \mu_{\text{G}}^2 + \varepsilon_1)(\sigma_{\text{S}}^2 + \sigma_{\text{G}}^2 + \varepsilon_2)),$$
- — assessing image quality and is used to capture the structural information.

• Dice Coefficient (DC)-map-level:

$$\begin{aligned} &\textit{dice}_i = \left(\epsilon + 2\sum_{n=1}^{N_i} y_n^i y_{*n}^i\right) / \left(\epsilon + \sum_{n=1}^{N_i} \left(y_n^i + y_{*n}^i\right)\right); \\ &\ell_{\text{DC}} = 1 - \sum_{i=1}^{C} \textit{dice}_i / \left(N_i + \epsilon\right) \\ &- - \text{measuring the similarity between two sets.} \end{aligned}$$

The region loss guides the network to learn the transformation in a three-level hierarchy.

Zhou ZHAO (LRDE) January 15, 2021 8 / 15

Boundary Loss: $\overline{\ell_{\mathsf{B}}} = \sum_{i}^{\mathsf{C}} \int_{\mathsf{G}_{\mathsf{B}}^{i}} \left\| \mathsf{S}_{\mathsf{B}}^{i} \left(\mathsf{a}', \mathsf{b}' \right) - \left| \mathsf{G}_{\mathsf{B}}^{i} \left(\mathsf{a}, \mathsf{b} \right) \right|^{2} \mathrm{d} \left(\mathsf{a}, \mathsf{b} \right)$

The boundary loss function is to optimize the segmentation result.

Zhou ZHAO (LRDE) January 15, 2021 9 / 15

Experiments and Results

Dataset description

- 100 annotated 3D MRIs
 - --80 cases for training and 20 cases for validating.
- Pixel spacing: $0.625 \times 0.625 \times 0.625$ mm/pixel.
- Image sizes: $88 \times 576 \times 576$ and $88 \times 640 \times 640$ pixels.

Pre-processing

- Cropping each slice to 346×346 pixels.
- Gaussian normalization.
- Stacking 3 successive 2D frames.

n-1 n

n + 1

3D-Like"

Initial image
Zhou ZHAO (LRDE)

Post-processing

- Keeping the greatest connected component of the segmentation.
- Padding with zeros to get back a initial width and height of a slice.

Implementation and Experimental Setup

- Keras/TensorFlow using a Nvidia Quadro P6000 GPU.
- Hybrid loss function
 - -softmax to get a probability distribution over classes.
- Adam optimizer
 - -batchsize=3, β 1=0.9, β 2=0.999, epsilon=0.001, lr = 0.01.
- Epoch=30.
- Evaluation method:
 - -Dice coefficient:
 - -95% Hausdorff distance (95HD);
 - -Average Hausdorff distance (AHD).

4 D > 4 A > 4 B > 4 B > B 9 9 9

Results on training datasets

Comparison of our method and other state-of-the-art architectures using a 5 fold cross-validation.

Method	Att. Module	Hyb. Loss	DC/%	95HD/mm	AHD/mm
U-Net [3]			88.556(±2.586)	4.447(±0.996)	$0.212(\pm 0.077)$
			89.613(±2.257)	$4.169(\pm0.960)$	$0.210(\pm 0.118)$
DANet [2]			84.229(±3.774)	$6.145(\pm 2.341)$	0.514(±0.477)
		/	$87.584(\pm 2.765)$	$4.903(\pm 1.448)$	$0.280(\pm0.179)$
Deeplabv3+ [1]			85.444(±3.079)	$5.872(\pm 2.345)$	$0.504(\pm0.614)$
		/	$87.556(\pm 1.155)$	$5.210(\pm 1.087)$	0.273(±0.074)
Our Method			$90.774(\pm 1.568)$	$3.312(\pm 1.277)$	$0.158(\pm0.092)$
	/		$91.326(\pm 1.174)$	$3.097(\pm0.810)$	0.143(±0.055)
	✓	✓	91.792(±1.065)	2.868(±0.667)	0.130(±0.042)

Chen, L.C., et al.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proc. of ECCV. pp. 801-818 (2018)

Fu, J., et al.: Dual attention network for scene segmentation. In: Proc. of CVPR. pp. 3146-3154 (2019)

Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Proc. of MICCAI. LNCS, vol. 9351, pp. 234–241. Springer (2015)

Comparison of the proposed method and other state-of-the-art architectures. The white pixels are the differences between the prediction and the GT.

13 / 15

Zhou ZHAO (LRDE) January 15, 2021

Conclusion

Treat boundaries and regions fairly

Hybrid loss

-considering regions and boundaries of objects equally by combining region loss with boundary loss.

Attention module

-preventing the interferences between the surrounding similar tissues and to capture large-scale and thiner structures

Temporal-like method

—taking advantage of the temporal information by stacking 3 successive 2D frames

Thank you!

Zhou ZHAO (LRDE) January 15, 2021 15 / 15