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Web-Supervised Image-Text Embedding

ICPR

Can web images with noisy annotations be leveraged upon with a fully annotated dataset
of Images with textual descriptions to learn better joint Image-Text embedding models?
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Figure: Weakly Supervised Image-Text Embedding. -- The goal is to utilize a large amount of weakly annotated
Images with a smaller dataset of fully annotated ones to learn a better image-sentence embedding.
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are often incomplete and noisy. i
= Using web data directly in training

[1,2] without refinement may lead to

ambiguity and degraded performance.
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Based on a limited fully annotated set of images with textual descriptions, is it possible to refine the tags of
web image and utilize them in boosting the performance of joint image-text embedding models?

[1] Yunchao Gong, et al., “Improving image-sentence embeddings using large weakly annotated photo collections”, European Conference on Computer Vision 2014
3/54 [2] Niluthpol Mithun et al., “Webly Supervised Joint Embedding for Cross-Modal Image-Text Retrieval”’, ACM Multimedia 2018.



Tensor Completion for Tag Refinement

Intra-Modal Similarity Matrices
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Recovery of Missing Relationships (Tags)

= Inter-relation between web image collection and clean dataset images
(based on associated tags) is modeled as a tensor

= Atensor completion based approach to refine tags

= Intra-modal similarity is used side information to regularize CP model
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Tensor Completion for Tag Refinement

* Intra-modal similarity is used side information to regularize CP model
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Training Image-Text Embedding Model !!!I!L
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» Image-text pairwise ranking loss objective is used for training the joint image-text embedding
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Data Preparation:

Experiments

= Create synthetic clean image-tag dataset from datasets (Flickr30K, MSCOCO) by
collecting the unique nouns and verbs as image tags from the associated sentences.

= Create noisy image-tag datasets (Observed) from the synthetic clean set based on the
missing ratio of tags (e.g., 30%, 50%, 70%)

Table: Relative
errors for
recovering missing
tags (before and
after tensor
completion)
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Flickr30K MSCOCO

Missing | 300  50% 70% 30% 50% 70%
Observed 0.563 0.721 0.839 0.534 0.703 0.838
Predicted (Proposed) 0.514 0.649 0.762 0.463 0.635 0.751
Improvement (%) by 9.53% 11.09% 10.10% 15.33% 10.71% 11.58%
Proposed

Predicted Tensor by Baselines

Proposed (Without | g 533 9705  0.826 | 0516 0689  0.822
Regularization)
Matrix Refinement 0.546 0.709 0.834 0.521 0.686 0.828

Average 11%
improvement over
the observed tensor

Proposed without
regularization shows
drop in performance

Matrix Refinement
approach is on par
with Observed.



Experi

ments

Table: Image to Text Retrieval Performance on MSCOCO Sets

Missing (%) = 30

R@1 R@10 MedR

Missing (%) = 50

R@1 R@10 MedR

Missing (%) = 70

R@1 R@10 MedR

Actual (No Missing)

Observed (Missing(%) of Actual)

Predicted (Proposed)

9.7

40.6 17

9.7

40.6 17

9.7 40.6 17
86 33.7 27
92 354 25
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Qualitative example of tag refinement

Actual — Initial Synthetic Clean Image-Tag Set
Created by Extracting Unique Noun and Verbs
from Captions Associated with Images as Tags.

Observed - Synthetic Noisy Web Image-Tag Set
Constructed by Removing Tags based on a
Given Missing (%)

Predicted - Refined Image-Tag Set by Refining

the Observed Set Applying Proposed Tensor
Completion Approach

Original Tags:

(a)

airport

Refined Tags:

airport,airplane

Original Tags:
Cat, pet

Refined Tags:

Cat, pet, water




Thank You!



