

Webly Supervised Image-Text Embedding with Noisy Tag Refinement

Niluthpol Chowdhury Mithun^{*}, Ravdeep Pasricha[†], Evangelos Papalexakis[†], Amit K. Roy–Chowdhury[†]

[†]University of California, Riverside, CA, U.S.

*Center for Vision Technologies, SRI International, Princeton, NJ, U.S.

International Conference on Pattern Recognition 2020

Web-Supervised Image-Text Embedding

Can web images with noisy annotations be leveraged upon with a fully annotated dataset of images with textual descriptions to learn better joint Image-Text embedding models?

Figure: Weakly Supervised Image-Text Embedding. -- The goal is to utilize a large amount of weakly annotated images with a smaller dataset of fully annotated ones to learn a better image-sentence embedding.

Web Image Tag Refinement

What happens when amount of **noisy** and missing tags associated with web images are unexpectedly high compared to small clean set available?

- Raw tags associated with web images are often incomplete and noisy.
- Using web data directly in training
 [1,2] without refinement may lead to
 ambiguity and degraded performance.

Based on a limited fully annotated set of images with textual descriptions, is it possible to refine the tags of web image and utilize them in boosting the performance of joint image-text embedding models?

[1] Yunchao Gong, et al., "Improving image-sentence embeddings using large weakly annotated photo collections", European Conference on Computer Vision 2014 [2] Niluthpol Mithun et al., "Webly Supervised Joint Embedding for Cross-Modal Image-Text Retrieval", ACM Multimedia 2018.

Tensor Completion for Tag Refinement

- Inter-relation between web image collection and clean dataset images (based on associated tags) is modeled as a tensor
- A tensor completion based approach to refine tags
- Intra-modal similarity is used side information to regularize CP model

Tensor Completion for Tag Refinement

Training Image-Text Embedding Model

Image-text pairwise ranking loss objective is used for training the joint image-text embedding

$$\mathcal{L}_{IT} = \sum_{(i,t)} \left\{ \sum_{t^{-}} \max\left[0, \Delta - f(i,t) + f(i,t^{-})\right] + \sum_{i^{-}} \max\left[0, \Delta - f(t,i) + f(t,i^{-})\right] \right\}$$

Experiments

Data Preparation:

- Create synthetic clean image-tag dataset from datasets (Flickr30K, MSCOCO) by collecting the unique nouns and verbs as image tags from the associated sentences.
- Create noisy image-tag datasets (Observed) from the synthetic clean set based on the missing ratio of tags (e.g., 30%, 50%, 70%)

			Flickr30K		MSCOCO				
Table : Relative errors for recovering missing tags (before and after tensor completion)	Missing	30%	50%	70%	30%	50%	70%		
	Observed	0.563	0.721	0.839	0.534	0.703	0.838		
	Predicted (Proposed)	0.514	0.649	0.762	0.463	0.635	0.751		
	Improvement (%) by Proposed	9.53%	11.09%	10.10%	15.33%	10.71%	11.58%		
	Predicted Tensor by Baselines								
	Proposed (without Regularization)	0.533	0.705	0.826	0.516	0.689	0.822		
	Matrix Refinement	0.546	0.709	0.834	0.521	0.686	0.828		

- Average 11% improvement over the observed tensor
- Proposed without regularization shows drop in performance
- Matrix Refinement approach is on par with Observed.

а С

Experiments

Table: Image to Text Retrieval Performance on MSCOCO Sets

	<u> Missing (%) = 30</u>			<u> Missing (%) = 50</u>			<u> Missing (%) = 70</u>		
	R@1	R@10	MedR	R@1	R@10	MedR	R@1	R@10	MedR
Actual (No Missing)	9.7	40.6	17	9.7	40.6	17	9.7	40.6	17
Observed (Missing(%) of Actual)	8.8	37.5	20	8.6	33.7	27	3.8	19.3	136
Predicted (Proposed)	9.7	40	19	9.2	35.4	25	6.8	28.9	34

Actual – Initial Synthetic Clean Image-Tag Set Created by Extracting Unique Noun and Verbs from Captions Associated with Images as Tags.

Observed - Synthetic Noisy Web Image-Tag Set Constructed by Removing Tags based on a Given Missing (%)

Predicted - Refined Image-Tag Set by Refining the Observed Set Applying Proposed Tensor Completion Approach

Qualitative example of tag refinement

Thank You!