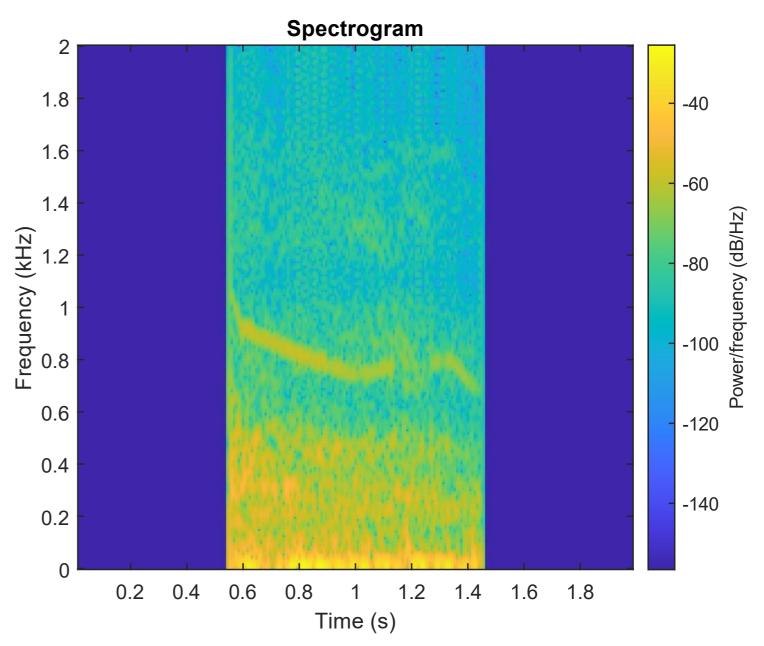
Influence of Event Duration on Automatic Wheeze Classification

<u>Bruno M. Rocha¹</u>, Diogo Pessoa¹, Alda Marques^{2,3}, Paulo Carvalho¹, Rui Pedro Paiva¹


¹Centre for Informatics and Systems, Department of Informatics Engineering (CISUC), Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal

²Respiratory Research and Rehabilitation Laboratory (Lab3R), School of Health (ESSUA), University of Aveiro, Aveiro, Portugal

³Institute of Biomedicine (iBiMed), University of Aveiro, Aveiro, Portugal

Respiratory Sounds

- Simple, objective, noninvasive marker to assess patients' respiratory condition
- Normal or adventitious respiratory sounds
 - Discontinuous ARS (crackles)
 - Continuous ARS (wheezes)

Limitations of Related Work

- * Field's reliance on small or private data collections
- Public repositories designed for teaching
- Lack of environmental noise
- Neglected experimental design
- Overestimated non-generalizable results

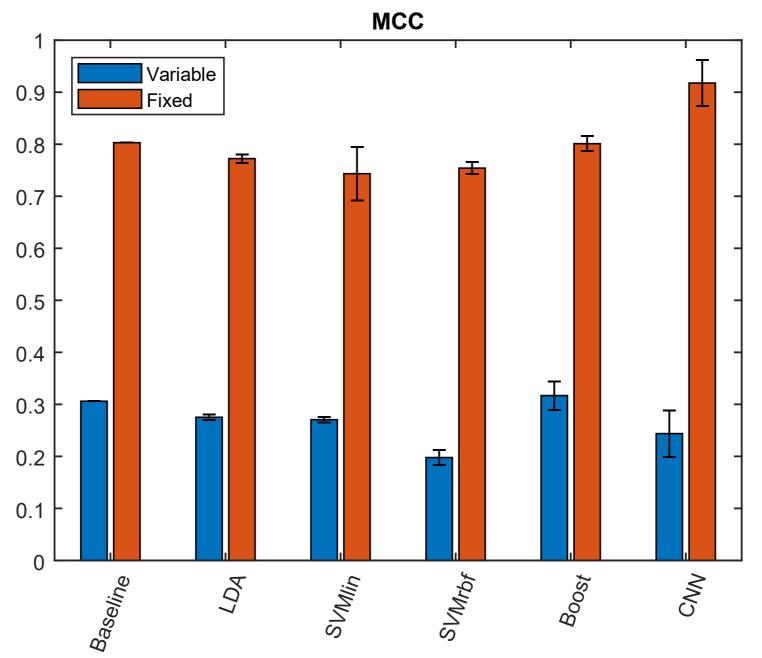
Random Event Generation

- Study the impact of event duration on performance
- Other (negative) class containing speech, cough, crackles, background noise
- Fixed durations
 - Random events with 150 ms
- Variable durations
 - Random events with durations between 100 ms and 2 s
 - Durations from the same distribution of wheeze events

Public Database

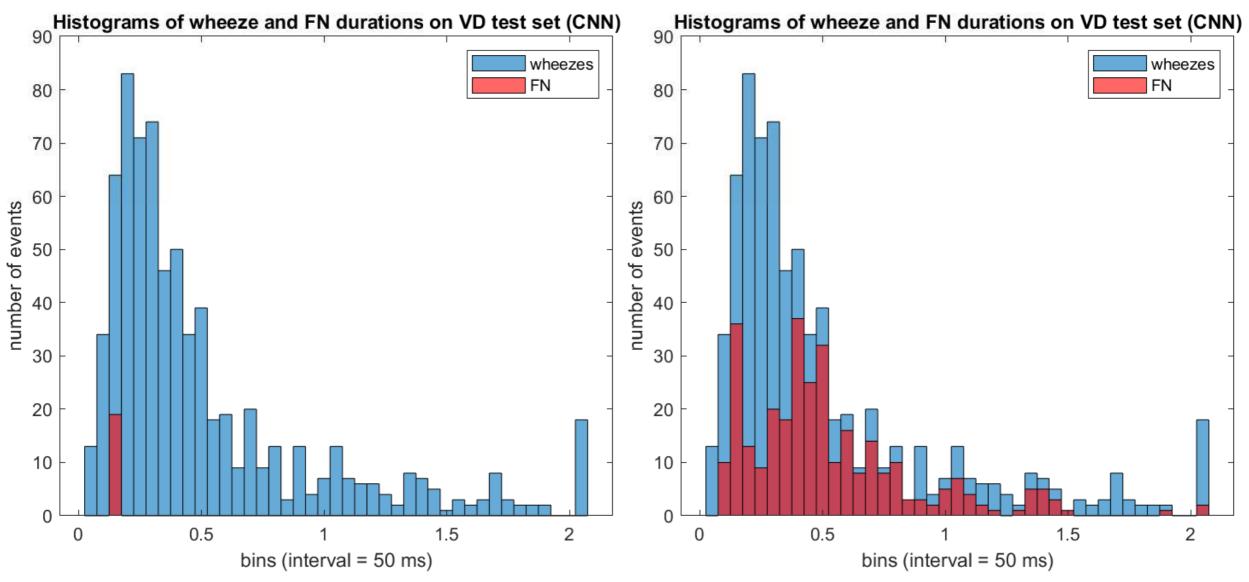
- * 5.5 hours of recordings
- 126 patients
- 7 locations on the chest wall: trachea; left and right anterior, posterior, and lateral.

	Training set	Test set	Total
Wheeze events	1173	725	1898
Other events	1781	1129	2910
Total	2954	1854	4808


Feature Extraction

Feature	Description	
Spectral Centroid	Center of mass of the spectral distribution	
Spectral Spread	Variance of the spectral distribution	
Zero-crossing Rate	Waveform sign-change rate	
Spectral Entropy	Estimation of the complexity of the spectrum	
Spectral Flatness	Estimation of the noisiness of a spectrum	
Spectral Roughness	Estimation of the sensory dissonance	
Spectral Irregularity	Estimation of the spectral peaks' variability	
Spectral Flux	Euclidean distance between the spectrum of successive frames	
Spectral Brightness	Amount of energy above {100,200,400,800} Hz	
Spectral Rolloff	Frequency such that {95,75,25,5}% of the total energy is contained below it	
MFCC	13 Mel-frequency cepstral coefficients	
Delta-MFCC	1st-order temporal differentiation of the MFCCs	
Chromagram Centroid	Tonal centroid	
Chromagram Peak	Tonal peak	
Pitch	Fundamental frequency estimation	
Voicing	Presence of fundamental frequency	
Inharmonicity	Partials non-multiple of fundamental frequency	

Classification


- Logistic Regression (Baseline)
- Linear Discriminant
- Linear SVM
- Gaussian SVM
- Boosted trees
- Convolutional Neural Network

Evaluation

 Significant variation in performance between fixed and variable duration events: CNN: FD - 0.92; VD - 0.24

Discussion

- Distributions of false negatives are quite different
 - Concentrated around 150 ms on FD test set
 - Encompassing all durations on VD test set

Discussion

- Significant variation in performance
- Classifiers are implicitly learning an irrelevant characteristic of the dataset, event duration
- Wheeze classification is a complex task not yet solved
- Robust experimental design is crucial for realistic evaluation of wheeze classification algorithms

Thank you!