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3D Point Clouds

Point clouds have emerged as a popular representation of 3D visual data. With a set
of unordered 3D points, one typically needs to transform them into latent
representation before further classification and segmentation tasks.

e They're generally comprise of the raw output data from most
3D data acquisition devices.

e |t avoids the memory issue through surface representation.

e |t doesnt require the point-wise connectivity information like
mesh which might not be obtained in practice.




Representation Disentanglement for 3D Point Clouds

e One cannot easily interpret such encoded latent representation.

e Due to the lack of order information, it is not easy to interpret the latent feature
derived by existing deep learning models.

e [tis much harder to extract and manipulate attributes of interest.
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Challenges

e Paired data such as different people do the same actions are hard to collect in
practice, which therefore are not available in our setting.

e Because pose information is hard to be represented as an one-hot vector or a
multi-hot vector. As a result, we choose to learn pose representation in a totally
data-driven manner instead of being guided by any manual labels.
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Proposed Method

e (Our modelis end-to-end learnable, which extracts body-type and pose
information by advancing adversarial learning and data recovery consistency
without observing pose label information.
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Learning Latent Representation for Body Types - 1

e Wedeploy an identity (ID) classifier C, to enforce the resulting latent vector z,
capturing identity (i.e., body-type)
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Learning Latent Representation for Body Types - 2

e Since x and x represent a pair of point cloud data with different poses but of
the same person, their body type vectors should be the same. Therefore, we
apply an average-pooling layer on the latent space to derive z,.
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Learning Latent Representation for Poses - 1

e \We deploy an auxiliary classifier CID with a gradient reversal layer to enforce the
pose feature vector excluding body-type information.
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Learning Latent Representation for Poses - 2

e \We further propose a cross-consistency concept for capturing pose information
in such unsupervised fashions and calculate the reconstruction loss through
Chamfer Distance and Projected Chamfer Distance.
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Quantitative Results

EMD - Earth Mover Distance

CD - Chamfer Distance

PD - Projected (Chamfer) Distance

Method MMD-EMD [10] | MMD-CD [9] | MMD-PD
VAE [8] 0.09469 0.00099 0.00023
AE [9] 0.12159 0.00154 0.00053
Fader [18] 0.13586 0.00186 0.00038
DRIT [22] 0.19400 0.00970 0.00235
ACGAN [16] 0.27210 0.00548 0.00134
Ours 0.07496 0.00079 0.00018
TABLE 1

RECONSTRUCTION PERFORMANCES OF VAE, ACGAN, FADER
NETWORKS, DRIT AND OURS ON D-FAUST IN TERMS OF EMD,
CHAMFER DISTANCE, AND PROJECTION DISTANCE. THE NUMBERS IN

BOLD INDICATE THE BEST RESULTS.



Ablation Study

e EMD - Earth Mover Distance

e (D - Chamfer Distance

e PD - Projected (Chamfer) Distance
Method MMD-EMD [10] | MMD-CD [9] | MMD-PD
Ours -cls 0.14278 0.00281 0.00094
Ours -proj 0.11691 0.00095 0.00023
Ours -gr 0.08684 0.00180 0.00051
Ours -cross 0.08207 0.00122 0.00022
Ours 0.07496 0.00079 0.00018

TABLE II

ABLATION STUDIES OF OUR MODEL DESIGN ON D-FAUST IN TERMS OF
EMD, CHAMFER DISTANCE, AND PROJECTION DISTANCE. NOTE THAT
OUR FULL VERSION (OURS) ACHIEVES THE BEST RESULT.



Feature Disentanglement

e To demonstrate the effectiveness and necessity of our body-type and pose
feature disentanglement, we retrain different versions of the body-type classifier,
taking different types of learned embeddings as the input.

Method z Zp Zin

AE [9] 0.775 - -

Fader [18] 0.800 - 0.487

DRIT [22] 0.915 0.446 0.361

Ours -gr 0.834 0.884 0.660

Ours 0.781 0.896 0.137
TABLE III

BODY-TYPE CLASSIFICATION USING LATENT VECTORS OF DIFFERENT
MODELS. NOTE THAT z IS DERIVED BY AE, WHILE 23 AND Zp ARE THOSE
DESCRIBING BODY-TYPE AND POSE INFORMATION, RESPECTIVELY.



Qualitative Results - 1
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Qualitative Results - 2
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Thank you for listening.



