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Scenario: Learning from Decentralized Private Data

* You want to train a deep neural network for classification tasks ... but you don’t have labeled data!
* You found people storing labeled data locally ... which you cannot access directly due to privacy concerns

* How can we leverage such decentralized labeled data for training a neural net?
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Federated Learning [McMahan+, 2017]
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Federated Learning [McMahan+, 2017]
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2. Clients update the global model with their own data
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Federated Learning [McMahan+, 2017]
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3. And send them back to the server
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Federated Learning [McMahan+, 2017]
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4. Server aggregates (averages) the client models to update the global one
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lterate multiple rounds

Federated Learning [McMahan+, 2017]
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Our Focus

- Client Model Architectures Server-client communications

Federated Learning Homogeneous Multi-rounds

All clients need to train the same model Server & clients exhange models iteratively



Our Focus

- Client Model Architectures Server-client communications

Our Focus Heterogeneous Single-round

Model architectures may vary by clients Clients share their own models only once



Decentralied Learning via Adaptive Distillation (DLAD)

* Key idea: network distillation [Hinton+, 2015] + adaptive aggregation
* Given unlabeled data source (distillation data), training global model to imitate aggregated outputs of client models

* Aggregating outputs adaptively to emphasize outputs from confident clients
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Decentralied Learning via Adaptive Distillation (DLAD) - cont’d

* Computing confidence-based aggregation weights
* Each client trains an additional classifier to distinguish their own data from distillation one

* Using classifier scores for aggregation weights: higher scores means clients are more confident about the outputs

-

More confident Aggregation weights Output of global model

, -
'\,/ A\ v\// = higher weights
V4 °
= - — —[a
= - \
- )/ - - .
s/ - / -
/- / UI
B ¢ - D | —
/7 ‘ Imitate
V4
= /[ \
- / - T >
Less confident /- Aggregated
P — mm

\ = lower weights s / output

11



Selected Results (CIFAR-10)
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Summary

 DLAD learned global model from decentralized data using adaptive distillation

* |t outperformed a baseline method with naive aggregation strategy

* Model-free RL extension available at IJCAI’20 -> Search by “MULTIPOLAR transfer RL”
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Contact:
Ryo Yonetani

ryo.yonetani@sinicx.com

https://yonetaniryo.github.io/
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