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I Problem IAIR

® Definition:
task: a complex human
activity with specific goals;
fluent: atime-varying object state;
® Objective:
Jointly infer object fluents and
complex tasks in videos;

® Method:

A causal sampling search algorithm.
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Fig. 1. Tasks and fluents in videos.
The bars represent the fluent states.




I Model JIAIR

® The score of labelling video | with fluent
states f and task y:
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® Inferring the fluent states f and task y (b)

by: Fig. 2. Hierarchical models of tasks and fluents.

(y*,f*) = argma%x Sy, f,I)
Y,




I Model JIAIR

Calculate appearance, cause, effect, and fluent change relations respectively.
® Fluent appearance: VGG-16 network ™ fluent state classifier;

® Cause: SVM = fluent change classifier;

® Effect: an effect classifier with histogram,;
°

Fluent change relation: a temporal descriptor mp represent fluent change relations.
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Fig. 3. Cause and effect windows in a task. Fig. 4. Fluent change relation descriptor.




.I Loss Function 1AIR

® \Ve learn the model parameters with structural SVM method:
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where &,,is a slack variable and C is a positive constant which

balances the training error and margin maximization.

® A(y,y",f, ") measures the joint loss between the hypothesized

task-fluent labels and the ground-truth ones:

Ay, y", £,£7) = A(y, y") + Ay (£, £7)




.I Results & Ablation IAIR

Methods
SFCNN 025

Frame CNN 0.39 Our Method 0.37
LSTM 0.31 Table. Il. Overall accuracy of 50-class fluent states.
Two-Stream CNN 0.54
4DHOI 02
ALE 0.67 App 0.609 0.290
Our Method U-02 App + Csl 0.614 0.294
Table. I. Overall task recognition accuracy. App + Csl + Rel 0.72 0.37

Table. Ill. Ablation analysis of different model terms.




I Visualization 1AIR

Video 1
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Video 2
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Fig. 5. Visualization of fluent and task recognition in videos.
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Thanks for watching
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