

Inferring Tasks and Fluents in Videos by Learning Causal Relations

Haowen Tang, Ping Wei, Huan Li, and Nanning Zheng

Xi'an Jiaotong University, Xi'an, China

Definition:

• Objective:

Jointly infer **object fluents** and **complex tasks** in videos;

• Method:

A causal sampling search algorithm.

video sequence: make coffee

states of mug

closed

open

states of coffee can

Fig. 1. Tasks and fluents in videos. The bars represent the fluent states.

 $(y^*, \mathbf{f}^*) = \arg \max_{y \in \mathbf{f}} S(y, \mathbf{f}, \mathbf{I})$

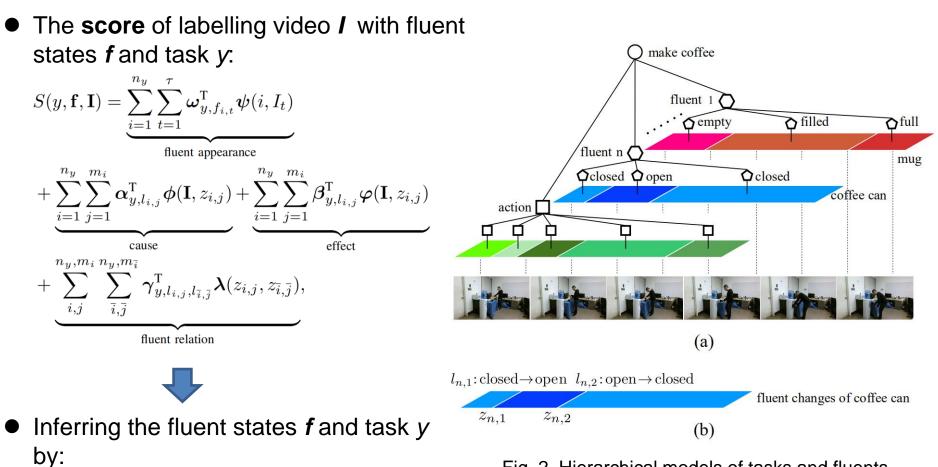


Fig. 2. Hierarchical models of tasks and fluents.

Calculate appearance, cause, effect, and fluent change relations respectively.

- **Fluent appearance:** VGG-16 network ⇒ fluent state classifier;
- **Cause:** SVM \Rightarrow fluent change classifier;
- Effect: an effect classifier with histogram;
- Fluent change relation: a temporal descriptor \Rightarrow represent fluent change relations.

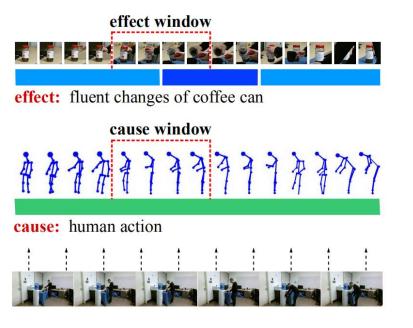


Fig. 3. Cause and effect windows in a task.

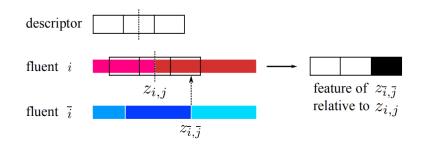


Fig. 4. Fluent change relation descriptor.

Loss Function

• We learn the model parameters with **structural SVM** method:

$$\arg\min_{\mathbf{w},\xi_n \ge 0} \frac{1}{2} \|\mathbf{w}\|^2 + \frac{C}{N} \sum_{n=1}^N \xi_n$$

s.t. $\forall n, \forall y, \forall \mathbf{f},$
 $S_{\mathbf{w}}(y^n, \mathbf{f}^n, \mathbf{I}^n) - S_{\mathbf{w}}(\mathbf{I}, y, \mathbf{f}) \ge \Delta(y, y^n, \mathbf{f}, \mathbf{f}^n) - \xi_n$

where ξ_n is a slack variable and *C* is a positive constant which balances the training error and margin maximization.

Δ(y, yⁿ, f, fⁿ) measures the joint loss between the hypothesized task-fluent labels and the ground-truth ones:

$$\Delta(y, y^n, \mathbf{f}, \mathbf{f}^n) = \Delta_s(y, y^n) + \Delta_f(\mathbf{f}, \mathbf{f}^n)$$

Results & Ablation

Methods	Accuracy	
Frame CNN	0.39	
LSTM	0.31	
Two-Stream CNN	0.54	
4DHOI	0.62	
ALE	0.67	
Our Method	0.72	

Table. I. Overall task recognition accuracy.

Methods	Accuracy	
SFCNN	0.25	
Our Method	0.37	

Table. II. Overall accuracy of 50-class fluent states.

Methods	Task Acc	Fluent Acc
Арр	0.609	0.290
App + Csl	0.614	0.294
App + Csl + Rel	0.72	0.37

Table. III. Ablation analysis of different model terms.

Visualization

Video 1

Task:

Fig. 5. Visualization of fluent and task recognition in videos.

Thanks for watching

Haowen Tang, Ping Wei, Huan Li, and Nanning Zheng

Xi'an Jiaotong University, Xi'an, China

