Channel Planting for Deep Neural Networks using Knowledge Distillation

Kakeru Mitsuno, Yuichiro Nomura and Takio Kurita

Hiroshima University, Japan

Kurita Laboratory

Introduction

Planting can search the optimal network architecture with smaller number of parameters for improving the network performance by augmenting channels incrementally to layers of the initial networks while keeping the earlier trained parameters fixed

HIROSHIMA UNIVERSIT

Knowledge distillation can transfer the knowledge of DNNs with a large number of parameter (teacher networks) to a smaller shallow networks (student networks)

$$\mathbb{L}_{\mathbb{KL}}(z^L||z^S) = \sum_i \frac{\exp z_i^L}{\sum_j \exp z_j^L} \log\left(\frac{\exp z_i^S}{\sum_j \exp z_j^S}\right)$$

Teacher Network

Proposed Method

1. Train a teacher network.

HIROSHIMA UNIVERSITY

HIROSHIMA UNIVERSITY

2. Train a small network with fewer channels at each layer

HIROSHIMA UNIVERSITY

3. Add channels to a layer of the small network

HIROSHIMA UNIVERSITY

4. Train the augmented channels by using knowledge distillation with the teacher network. *Planting procedure*

HIROSHIMA UNIVERSITY

5. Repeat the 3. and 4. operation for each layer in the network and obtain multiple networks. *Planting procedure*

HIROSHIMA UNIVERSITY

6. Select a planted network with the smallest validation loss

HIROSHIMA UNIVERSITY

7. Repeat 5. and 6. while reducing the classification loss than the previous network

HIROSHIMA UNIVERSITY

8. Obtaining a small network with fewer channels, which has higher performance than the networks obtained in a standard training procedure and can prevent over-fitting.

Experiments

Network architecture and datasets

• CIFAR-10, CIFAR-100 and STL-10

THE STRUCTURE OF NETWORKS

For CIFAR-10/100	For STL-10
ReLU(conv1(kernel=3))	ReLU(conv1(kernel=3))
max pooling(2*2)	max pooling(2*2)
ReLU(conv2(kernel=3))	ReLU(conv2(kernel=3))
max pooling $(2*2)$	max pooling(2*2)
ReLU(conv3(kernel=3))	ReLU(conv3(kernel=3))
ReLU(conv4(kernel=3))	max pooling(2*2)
ReLU(conv5(kernel=3))	ReLU(conv4(kernel=3))
max pooling(2*2)	ReLU(conv5(kernel=3))
ReLU(fc1())	max pooling(2*2)
output=fc2()	ReLU(fc1())
	output=fc2()

Results

On CIFAR-10

Network	Params	Test Err.	Test Acc.	Loss func
Teacher[128]	857 5K	0.5007	88.10%	CELoss
Student[128]	057.5 K	0.3823	88.51%	KLLoss
Initial Network	20 4K	0.8300	71.55%	CELoss
(Student[8])	20.4K	0.8245	71.69%	KLLoss
Student[16]	43.9K	0.6071	79.42%	CELoss
		0.6108	79.23%	KLLoss
Student[32]	104.8K	0.4898	84.03%	CELoss
		0.4791	84.02%	KLLoss
Student[64]	282.0K	0.4431	86.83%	CELoss
		0.4103	86.80%	KLLoss
Ours	40.6K	0.4825	84.35%	KLLoss

Results

On CIFAR-100

Network	Params	Test Err.	Test Acc.	Loss func
Teacher[128]	860.1 <i>V</i>	2.5010	57.76%	CELoss
Student[128]	009.1 K	1.6232	60.05%	KLLoss
Student[8]	32.0K	2.5280	36.53%	CELoss
		2.5053	36.90%	KLLoss
Initial Network	55.5K	2.1190	45.45%	CELoss
(Student[16])	55.5 K	2.0679	46.66%	KLLoss
Student[32]	116.5K	1.9022	52.15%	CELoss
		1.7805	53.72%	KLLoss
Student[64]	293.6K	1.9510	55.74%	CELoss
		1.6707	57.71%	KLLoss
Ours	78.5K	1.7584	54.31%	KLLoss

Results

On STL-10

Network	Params	Test Err.	Test Acc.	Loss func
Teacher[64]	445.8K	1.5360	66.33%	CELoss
Student[64]		1.1807	66.47%	KLLoss
Initial Network	40.8K	1.2776	55.55%	CELoss
(Student[8])		1.2682	54.99%	KLLoss
Student[16]	84.9K	1.2924	59.34%	CELoss
		1.1998	61.10%	KLLoss
Student[32]	186.8K	1.2213	64.57%	CELoss
		1.1712	64.07%	KLLoss
Student[128]	1.2M	1.7612	67.04%	CELoss
		1.1643	67.71%	KLLoss
Ours	82.6K	1.0772	67.12%	KLLoss

Conclusion

- Proposed a novel incremental training method for DNNs called *planting*, that can train smaller network with excellent performance and find the optimal network architecture automatically.
- Introduced the **knowledge transfer** to train planted channels.
- We confirmed that the proposed approach was able to achieve comparable performance with smaller number of parameters compared to the larger network.

Thank you

