

Presenter: Wenhao Li Advisor: Prof. Hong Liu Date: 2020.12

Robust Audio-Visual Speech Recognition Based on Hybrid Fusion ICPR 2020

Hong Liu, Wenhao Li, Bing Yang Key Laboratory of Machine Perception Shenzhen Graduate School, Peking University

Introduction

Audio-Visual Speech Recognition (AVSR)

- The approach of AVSR system is to leverage the extracted information from one modality to improve the recognition accuracy of the other modality by complementing the missing information.
- Visual information, which is not affected by acoustic noise, can significantly improve the performance of speech recognition in noisy environments.

Traditional speech recognition device

Affected by acoustic noise

Introduction

Challenges

- Intra-Class variations
- Inter-Class similarities
- Various lighting
- Complex backgrounds

Major Challenges

Two different individuals pronounce "you"

• Fuse the two modalities more effectively and robustly due to the intrinsically ambiguous nature of homophones, especially in noisy environments

Various lighting

Complex backgrounds

Introduction

Motivation

Baseline

- Only use feature fusion
- Audio and visual features are concatenated directly
- Only use one audio-visual loss

Solution

- Introduce decision fusion
- Introduce audio-visual encoder
- Introduce combined loss

End-to-end audiovisual speech recognition, ICASSP 2018.

Proposed Method

Overview of the Proposed Method

Overview of the proposed end-to-end audio-visual speech recognition method based on hybrid fusion

Proposed Method

Audio-Visual Hybrid Fusion Network

• Audio-Visual feature fusion

Audio-Visual encoder

- A simple yet effective and light-weight, two fully-connected layers, residual connection
- Map audio and visual features into a shared latent space to capture more discriminative multimodal feature
- Learn more crucial information and find the internal correlation between spatial-temporal information from audio and visual networks effectively

Audio-Visual BGRU

- 2-layer BGRU: consist of 1024 cells in each layer
- Fuse the information from the two modalities

Audio-Visual Feature Fusion

7

Proposed Method

Audio-Visual Hybrid Fusion Network

- Audio-Visual decision fusion
 - The fusion likelihood

$$P(c_i|x) = \alpha P(c_i^a|x^a) + \beta P(c_i^v|x^v) + \gamma P(c_i^{av}|x^{av})$$

Satisfy the constraints

$$\alpha+\beta+\gamma=1, 0\leq \alpha, \beta, \gamma\leq 1$$

The class label

$$z = \arg\max_{i} \left\{ P\left(c_{i}|x\right) \right\}$$

Audio-Visual Decision Fusion

Proposed Method

Audio-Visual Hybrid Fusion Network

- Audio-Visual training
 - Cross-entropy loss for each network

$$L_k = -\sum_{i=1}^{C} y_i \log P\left(c_i^k | x^k\right)$$

- $k \in \{a,v,av\}$: audio, visual and audio-visual stream
- y: the true class label of each sequence
- C: the number of target isolated words
- Total objective

$$L = \lambda_a L_a + \lambda_v L_v + \lambda_{av} L_{av}$$

- λ : the weighting factor
- L: the combined loss of the audio-visual network

The model focuses on various modalities and shows its noise-robustness in learning the joint representation across audio- visual modalities.

Datasets

- Lip Reading in the Wild (LRW)
 - The largest publicly available dataset for audio-visual speech recognition task, more than 1000 speakers, 500 different isolated words, such as "YOUNG", "SOCIAL" and "UNITED"
 - Short video clips with 29 frames (1.16 seconds) from BBC television

Experimental Setting

Babble and white noises from the Noisex92 dataset, SNRs of 20 dB, 15 dB, 10 dB, 5 dB, 0 dB,
-5dB and -10 dB to the traing and test sets.

Top: Example of video frames from Lip Reading in the Wild dataset. Bottom: Mouth ROI sequences for 'about' from two different speakers.

Comparison with the State-of-the-art

Modalities	Methods	Word accuracy (%)		
Audio	Petridis et al. [19]	97.70		
	Stafylakisa et al. [25]	97.96		
Visual	Chung et al. [20]	61.10		
	Chung et al. [12]	76.20		
	Petridis et al. [19]	82.00		
	Stafylakis et al. [23]	83.00		
	Wang <i>et al.</i> [26]	83.34		
	Zhao et al. [27]	84.41		
Audio-Visual	Petridis et al. [19]	98.20		
	Ours	98.91		

Word accuracy (%) of the audio-only, visual-only and audiovisual models on the LRW dataset in clean audio condition.

Comparison with the State-of-the-art

Comparisons of the word accuracy (%) with the state-of-the-art method under different levels of babble noise and white noise on LRW dataset.

Ablation Studies

- w/ AV encoder: insert an audio-visual encoder into base- line.
- w/ combined loss: insert a combined loss into baseline.
- w/ AV decision: insert a decision fusion module into baseline.
- w/A+V decision: insert a decision fusion strategy into our audio and visual networks.

SNR(dB)	-10	-5	0	5	10	15	20
Baseline [19]	81.27	90.22	95.47	97.20	97.89	98.17	98.20
w/ combined loss	86.08	92.58	96.29	97.50	97.97	98.23	98.29
w/ AV encoder	85.05	91.90	96.34	97.81	98.35	98.52	98.62
w/ AV decision	85.91	92.09	96.32	97.80	98.34	98.55	98.64
w/ A+V decision [24]	84.69	89.48	94.64	96.72	97.59	97.98	98.15
Ours	88.15	93.10	96.79	98.08	98.57	98.75	98.81

Ablation studies on different components of our audio-visual model at varying SNR levels of babble noise. Word accuracy (%) on the LRW dataset.

Conclusions

- We present a novel hybrid fusion based method for AVSR to address the challenge of inherent ambiguity, which is able to distinguish words with similar pronunciations and becomes robust to various noisy conditions.
- A simple yet effective audio-visual encoder is proposed to capture more discriminative multimodal feature from both modalities; A decision fusion module is designed in order to complementarily utilize the reliability measures of audio and visual information; A combined loss to make the model learn the joint representation across audio-visual modalities robustly.
- Experiments on LRW dataset demonstrate that our method achieves superior performance compared to other state-of-the-art methods in both clean and noisy conditions.

Thank You! Q&A