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Background - Preamble
• Machine learning models are widely used to automate decision 

making processes
• E.g. image classification

“Otter”Image 
Classifier
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Background - Preamble
• However, such methods are known to be susceptible to adversarial 

attacks.

+
Specially 
crafted 

perturbation

“Otter” “Monkey”

Simple illustration of the effects of an adversarial attack
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Background – Attacks Routines Used
• We used several popular white-box attack routines

1. Basic Iterative Method (BIM)
2. Projected Gradient Descent (PGD)
3. Momentum Iterative Method (MIM)
4. Carlini & Wagner Attack (CW)

• A black-box attack routine was also used
1. Boundary Attack (BA)
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Proposed Method
• Propose Adaptive Noise Injection Stochastic Students (𝐴𝑁𝐼𝑆!)

mechanism 
• Fine-tunes a deterministic network (teacher) to a stochastic variant 

(student)
• Injects noise within activation functions with adaptive stochasticity 

during training
• Using input data statistics based on Exponential Moving Average (EMA)

• Different degrees of noise are used at different parts of the 
network
• Different hidden activation values across the network

• Trained in conjunction with Adversarial Training
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Proposed Method
• Denote our proposed activation block as StocReLUEMA, ℎ" ⋅
• For an exemplary ResNet18 basic block:

conv1 bn1 ℎ!" conv2 bn2 ℎ#"+ outin

Basic block
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Proposed Method
• Let our StocReLUEMA be ℎ! ⋅ and vanilla ReLU be ℎ ⋅ . At 

Layer 𝑖:
ℎ′ 𝑥(#) = ℎ(𝑥(#) + 𝛿(#))

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛿(#)~𝑁(0, 𝛾 ⋅ 𝜎(#)%)
• 𝛾 increases as training epochs increases

• Adaptive noise injection tuned during training, updated 
after each batch 𝑡 via:

𝜎&'(
# = 1 − 𝛼 ⋅ 𝜎&

# + 𝛼 ⋅ 𝑆𝑇𝐷)*+,#-.(𝑥 # )
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Proposed Method
• 𝛼 set as 0.5
• Recall that StocReLUEMA:

ℎ′ 𝑥(") = ℎ(𝑥(") + 𝛿("))
𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝛿(")~𝑁(0, 𝛾 ⋅ 𝜎(")$)
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Baselines Used
1. Adversarial Training (AT)
• Trains model on adversarial samples generated with correct 

labels
2. TRADES
• Introduce a regularisation term that encourages adversarial 

robustness
3. Learn2Perturb (L2P)
• Introducing noise parameters as learnable parameters for the 

network
• Trained with AT
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Baseline Classification Results

Defence Methods CIFAR-10 CIFAR-100
None 0.940 0.760

AT 0.846 0.574
L2P 0.859 0.566

TRADES 0.809 0.594
𝑨𝑵𝑰𝑺𝟐 (Proposed) 0.829 0.575

Classification accuracy of the respective approaches on clean CIFAR-10 and CIFAR-100 test 
data. “None” indicates standard training without any defence introduced. Higher is better.
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White-box Attack Results
• We report the Adversarial Success Rate (ASR). More specifically:

𝐴𝑆𝑅 = 𝔼&,(~*{𝑃(𝑓 𝑥 + 𝛿 ≠ 𝑌 ||𝑓 𝑥 = 𝑌}
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Black-box Attack Results

BIM attack on teacher model; 
CIFAR-10

MIM attack on teacher model; 
CIFAR-10

BIM attack on teacher model; 
CIFAR-100

MIM attack on teacher model; 
CIFAR-100

• Black-box transferability
attack
• Generate on teacher, 

launched against student

• Due to weights initialization 
policy
• Proposed VS the rest
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Black-box Attack Results

Defence 
Method

CIFAR-10 CIFAR-100

AT 0.758 0.818
L2P 0.022 0.036

TRADES 0.942 0.768
𝐴𝑁𝐼𝑆#

(Proposed)
0.048 0.064

ASR against the various defence methods when 
launching BA across CIFAR-10 and CIFAR-100. 

500 samples were used. Lower is better.

• L2P and 𝐴𝑁𝐼𝑆/ show high 
robustness to decision-based 
black-box attacks
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Decision Boundary Evolution During 
Training

Illustration of prediction labels of an exemplary region based on three data points (black dots) of 
CIFAR-10. Top row: our stochastic student trained with 𝐴𝑁𝐼𝑆# WITHOUT adversarial training. Bottom 

row: our stochastic student trained with 𝐴𝑁𝐼𝑆# WITH adversarial training, introduced from the fourth 
image onward. 
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Ablation Study
• Varied the following factors:

• Presence of AT
• Presence of EMA
• Presence of teacher-initialisation

• Coloured ‘x’ – clean 
accuracy

• Coloured ‘.’ – ASR
• Black ‘+’ - max(ACC − ASR, 0)
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Conclusion
• Propose 𝐴𝑁𝐼𝑆!, conceptually simple EMA-based adaptive 

noise injection mechanism 
• Can be applied to any layer

• Able to outperform baselines in robustness under white-box 
attack settings
• AT as finetuning allows adaptation to new features

• Exemplified by evolution of decision boundary
• EMA to adapt noise prevents sharp degradation in clean 

accuracy while providing smooth trends
• Stochasticity should be used as a complement instead of a 

substitute
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