

CYBER SECURITY LABORATORY

Adaptive Noise Injection for Training Stochastic Student Networks from Deterministic Teachers

Yi Xiang Marcus Tan, Yuval Elovici, Alexander Binder

Background - Preamble

- Machine learning models are widely used to automate decision making processes
 - E.g. image classification

Background - Preamble

 However, such methods are known to be susceptible to adversarial attacks.

Specially+ craftedperturbation

"Monkey"

"Otter"

Simple illustration of the effects of an adversarial attack

Background – Attacks Routines Used

- We used several popular white-box attack routines
 - 1. Basic Iterative Method (BIM)
 - 2. Projected Gradient Descent (PGD)
 - 3. Momentum Iterative Method (MIM)
 - 4. Carlini & Wagner Attack (CW)
- A black-box attack routine was also used
 - 1. Boundary Attack (BA)

- Propose Adaptive Noise Injection Stochastic Students (ANIS²)
 mechanism
 - Fine-tunes a deterministic network (teacher) to a stochastic variant (student)
 - Injects noise within activation functions with adaptive stochasticity during training
 - Using input data statistics based on Exponential Moving Average (EMA)
- Different degrees of noise are used at different parts of the network
 - Different hidden activation values across the network
- Trained in conjunction with Adversarial Training

- Denote our proposed activation block as StocReLUEMA, $h'(\cdot)$
- For an exemplary ResNet18 basic block:

Co-Confidential

• Let our StocReLUEMA be $h'(\cdot)$ and vanilla ReLU be $h(\cdot)$. At Layer i:

$$h'(x^{(i)}) = h(x^{(i)} + \delta^{(i)})$$

such that $\delta^{(i)} \sim N(0, \gamma \cdot \sigma^{(i)^2})$

- γ increases as training epochs increases
- Adaptive noise injection tuned during training, updated after each batch t via:

$$\sigma_{t+1}^{(i)} = (1 - \alpha) \cdot \sigma_t^{(i)} + \alpha \cdot STD_{chnwise}(x^{(i)})$$

- α set as 0.5
- Recall that StockelueMA:

$$h'(x^{(i)}) = h(x^{(i)} + \delta^{(i)})$$

such that $\delta^{(i)} \sim N(0, \gamma \cdot \sigma^{(i)^2})$

Algorithm 1: Training with adaptive noise injector

```
Input: Teacher network's weights, \theta_{teach}; Max
        epochs, T; Initial \gamma_{init}; Max \gamma_{max}; Gamma
        update interval, r
Output: Student network's weights, \theta_{student}
Initialise stochastic student network with \theta_{teach} and
 \gamma_{init};
k = r * (\gamma_{max} - \gamma_{init})/T;
for t = 1, ..., T do
    Get mini-batch from training data
     B = \{(x_1, y_1), ..., (x_m, y_m)\};
    for j = 1, ..., m do
        Perform standard training routine with
```

```
adversarial training on mini-batch;
         Update \sigma in each stochastic layer,
          \sigma_{new} = (1 - \alpha) * \sigma_{old} + \alpha * STD_{chnwise}(input)
    end
    if t \mod r = 0 then
        \gamma = \gamma + k
    end
end
```


Baselines Used

- 1. Adversarial Training (AT)
 - Trains model on adversarial samples generated with correct labels
- 2. TRADES
 - Introduce a regularisation term that encourages adversarial robustness
- 3. Learn2Perturb (L2P)
 - Introducing noise parameters as learnable parameters for the network
 - Trained with AT

Baseline Classification Results

Defence Methods	CIFAR-10	CIFAR-100
None	0.940	0.760
AT	0.846	0.574
L2P	0.859	0.566
TRADES	0.809	0.594
ANIS ² (Proposed)	0.829	0.575

Classification accuracy of the respective approaches on clean CIFAR-10 and CIFAR-100 test data. "None" indicates standard training without any defence introduced. Higher is better.

White-box Attack Results

• We report the Adversarial Success Rate (ASR). More specifically: $ASR = \mathbb{E}_{X,Y\sim D}\{P(f(x+\delta)\neq Y\mid |f(x)=Y\}$

Black-box Attack Results

BIM attack on teacher model; CIFAR-10

BIM attack on teacher model; CIFAR-100

MIM attack on teacher model; CIFAR-10

MIM attack on teacher model; CIFAR-100

- Black-box transferability attack
 - Generate on teacher, launched against student
- Due to weights initialization policy
 - Proposed VS the rest

Black-box Attack Results

 L2P and ANIS² show high robustness to decision-based black-box attacks

Defence Method	CIFAR-10	CIFAR-100
AT	0.758	0.818
L2P	0.022	0.036
TRADES	0.942	0.768
ANIS ² (Proposed)	0.048	0.064

ASR against the various defence methods when launching BA across CIFAR-10 and CIFAR-100. 500 samples were used. Lower is better.

Decision Boundary Evolution During Training

Model epoch

Illustration of prediction labels of an exemplary region based on three data points (black dots) of CIFAR-10. Top row: our stochastic student trained with ANIS² WITHOUT adversarial training. Bottom row: our stochastic student trained with ANIS² WITH adversarial training, introduced from the fourth image onward.

Ablation Study

- Varied the following factors:
 - Presence of AT
 - Presence of EMA
 - Presence of teacher-initialisation
- Coloured 'x' clean accuracy
- Coloured '.' ASR
- Black '+' max(ACC ASR, 0)

(c) Without EMA-based adaptive noise tuning mechanism.

(b) Without adversarial training.

(d) Without teacher-initialisation of student.

Conclusion

- Propose ANIS², conceptually simple EMA-based adaptive noise injection mechanism
 - Can be applied to any layer
- Able to outperform baselines in robustness under white-box attack settings
- AT as finetuning allows adaptation to new features
 - Exemplified by evolution of decision boundary
- EMA to adapt noise prevents sharp degradation in clean accuracy while providing smooth trends
- Stochasticity should be used as a complement instead of a substitute

Selected References

- A. Jeddi, M. J. Shafiee, M. Karg, C. Scharfenberger, and A. Wong, "Learn2perturb: an end-to-end feature perturbation learning to improve adversarial robustness," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1241–1250.
- H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I. Jordan, "Theoretically Principled Trade-off between Robustness and Accuracy," Proceedings of the 36th International Conference on Machine Learning, PMLR, 2019, pp 7472-7482 2.
- I. J. Goodfellow, J. Shlens, and C. Szegedy, "Explaining and harnessing adversarial examples," arXiv 3. preprint arXiv:1412.6572, 2014.
- A. Kurakin, I. Goodfellow, and S. Bengio, "Adversarial examples in the physical world," arXiv preprint arXiv:1607.02533, 2016.
- Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, "Boosting adversarial attacks with momentum," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 9185–9193.
- N. Carlini and D. Wagner, "Towards evaluating the robustness of neural networks," in 2017 IEEE symposium on security and privacy (sp). IEEE, 2017, pp. 39–57.
- A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, "Synthesizing robust adversarial examples," in International Conference on Machine Learning, 2018, pp. 284–293.
- W. Brendel, J. Rauber, and M. Bethge, "Decision-based adversarial attacks: Reliable attacks against black-box machine learning models," in International Conference on Learning Representations, 2018. 8.

