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Motivation

With the advances of computing capability, deep neural network
(DNN) based algorithms have greatly promoted state-of-the-art.

Essentially, generation of the aforementioned deep-level feature
representation is accomplished by extracting the abstract semantics
of the input data sets with a deep cascade network structure.

Nevertheless, since the deep-level features are learned from
different layers, it is necessary to collect enormous data samples to
guarantee that the parameters in the deep layers are able to be
tuned successfully.

Therefore, the learned deep-level feature representation is a data-
driven solution, maybe leading to failures on the small scale data
sets.
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The proposed method-DDCCANet (1)

According to the aforementioned discussion, one potential solution to
balancing the small scale and deep-level feature representation is to
integrate the multi-view representation and the deep cascade structure
effectively.

In this paper, a distinct discriminant canonical correlation analysis
network (DDCCANet) based deep information quality representation is
proposed for image classification.

DDCCANet possesses three different parts, including DDCCA filters,
pooling operation, information quality representation.
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The proposed method-DDCCANet (2)

J DDCCA filters

= Distinct Discriminant CCA (DDCCA)

DDCCA aims to find the discriminant information by the within-class and
between-class correlation matrices across two data sets instead of the
scatter matrix, it is able to explore more discriminant representation

especially in multi-feature spaces.

T o
argmax p = w1~ Cg, g, Wa,
Ly ,lato

subject to

L"“]Tcrlxlwl . L"“ETC:I'QTQ':"'JZ =1
Then Lagrange multiplier and GEV algorithms are utilized to find the solution.
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‘The proposed method-DDCCANet (3)

1) DDCCA Filters: Given a set of images [Iy,I5,...Ip],
where M is the number of images. There are two-view data
sets [I1, 13, ...1%,] and [I2, I2, ...I3;] with size px q. To extract
the learned deep-level feature representation, first, the given
two-view data sets are divided into different patches with the
size being [; x ls. Then, we select an [; x lo patch around
each pixel and the vectorized operation is performed on the
selected patches. Therefore, all patches collected from the kth
sample of the dth (d € [1,2]) view set are written as the
vectorial forms I I, ..., I¢ & Rz, The patches from

: k.pq
all M samples of the dth view set are written as follows

d - * d * [1laxMpqg
¢ =[1d" 12", ...I12"| e R ,

where

Ik* - [Ig,lafg,gz "'1Ig,pq] = thqu(k S [112: 1‘{1{])
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‘ The proposed method-DDCCANet (4)

In DDCCANet, since DDCCA is utilized to learn the param-
eters of the deep network from the input samples to explore
discriminant information, I is considered as the dth data set
with size [;[5 x M pg, where [1[5 is the number of *dimensions’
and M pgq is the number of ‘training samples’, respectively.
Afterwards, the optimization function of DDCCA on I! and
I? is formulated as

arg max p = i e s

W ,Wwa

subject to

wlTCpﬁwl — WQTCIEIELUE =3
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‘The proposed method-DDCCANet (5)

Based on the Lagrange multiplier and GEV algorithms, the
solutions wy; and w9 are with size [{lo x [{lo. Then, each
column of wy and wo is chosen as the DDCCA filter for deep
feature representation. Suppose we have L; filters in the ith
layer of the 1th view, the filters are formulated as follows

1 11 x1
W, =res;, i,(w1g) € B**?,9=1,2,.,L;.

Similarly, the filters in the 2th view are formulated as follows

ng = resy, 1,(we g) € R¥2 . g=1,2,.., L;.

where res;, ;,(h) is a function to reshape h € R"™ into a
matrix with size [; x [5.
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‘The proposed method-DDCCANet (6)

Therefore. in the ith layer of the dth view. it is capable of
obtaining L; outputs I} | = rest, 1,(I¢)® H-"'g from the kth
sample, where “@’ is the 2D convolution operator. Essentially,
the aforementioned analysis aims to accomplish the task of 2D
convolution by vectors based product operator, which is drawn
oraphically in Figure. 1.

X — B ¢

d d
w, res, , (I ;)

@y ¢ j’fﬁ}.{j =1__,_"-'1_____pgj|

Figure 1. The representation of DDCCANet filters
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‘The proposed method-DDCCANet (7)

2) Pooling Operation: Suppose there are i+1 layers for the
proposed DDCCANet architecture, and the outputs are given
as I3 g@Wf for the kth sample of the dth view. Then outputs
are binarized based on Hashing transform in following equation

S{Idﬂ:tﬁctg & I‘j}d}(é — 1 2:- g L'i-l-l):

where

5(9:):{ 1, (z>0)

0, others.

After that, the vector of £ binary bits is considered as a decimal
number, resulting in a single integer-valued “image”
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‘The proposed method-DDCCANet (8)

3) Information Quality Representation: Based on the pre-
vious subsection, each generated image Qg , iS partitioned
into A blocks. Different from the existing CCANet and related
algorithms, information quality (IQ) instead of histogram is
employed to generate the deep-level feature representation.

H(p(t)) = —log(p(t)).

where p(t) is the prior probability of ¢, the 1Q of the decimal
values in each block is calculated. Next, IQ values in all the
A blocks are transformed into one vector as H(Qd k.q)-

12/6/2020 11



The proposed method-DDCCANet (9)

Therefore, in the DDCCANEet, the deep level representation of the
kth sample in the dth view is written as

ﬁlﬂif | [ ..
Op,a = [H(Qax1); ---~H(Qd.k.f_.,-)]T e ey,

Finally, the final deep-level feature representation corresponding to
the kth sample by integrating two different views is formulated as
following

Ly +1
i1 ;
Or = [0k,1;0k,2] € RC b,

In summary, the proposed DDCCANet based deep-level feature
representation architecture is depicted in Figure. 2.
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‘The proposed method-DDCCANet (10)

Figure. 2 The diagram of the proposed DDCCANet
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Experimental results and analysis(1)

The ORL Database

During our experiments, the local binary patterns (LBP) operation is
performed on each sample to generate the second view data set for
CCANet and DDCCANet. As a result, the original images and LBP
maps are utilized together to accomplish the task of deep-level
feature representation for face recognition as shown in Figure. 3.

-
= a

{a) Original image

TABLE 1

(17 view) = DDCCANet THE PERFORMANCE OF CCANET AND DDCCANET ON
m THE ORL DATABASE
l [CCANet)

Methods Performance

CCANet [10] 96.90%
DDCCANet 97.50%

(b) The LBF map (Outputs)
(2™ view)

Figure 3. The diagram of face recognition
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‘ Experimental results and analysis(2)

TABLE 11
THE PERFORMANCE WITH DIFFERENT ALGORITHMS ON
THE ORL DATABASE

Methods Performance
DDCCANet 97.50%
AOS+VGG [12] 03.62%
CDPL [13] 95.42%

ANFIS-ABC [14]  96.00%
SOLDE-TR [15]  95.03%
GDLMPP [16] 94.50%

CNN [6] 95.00%
PCANet [17] 96.50%
CS-SRC [18] 96.00%
ANFIS [11] 96.00%
LCCA [19] 95.50%

12/6/2020



‘ Experimental results and analysis(3)

ETH-80 Database

In the experiment, we choose 1000 images to construct the training subset and
the remaining 2280 images are chosen as the testing samples. All samples are
reduced as the size 64*64. The R and G sub-channel images are adopted as the

two different views as shown in Figure. 4.

sjole

(a) Original image (b) R sub-channel image (c) G sub-channel image

Figure. 4 The original image, R and G sub-channel images in the ETH-80
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‘ Experimental results and analysis(4)

TABLE I

THE PERFORMANCE WITH DIFFERENT ALGORITHMS ON
THE ETH&0 DATABASE

Methods Performance
DDCCANet 91.67 %
CCANet [9] 01.45%
PCANet [17] 01.28%

RandNet-1 |20] 18.50%
RandNet-1 |20] 83.51%

DCC [21] 86.25%
LEML [22] 84.25%
PML [23] 80.00%
SDNN [26] 82.80%
MED [27] 86.91%

ALP-TMR [28]  84.86%
CERML [29] 85.00%
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‘ Experimental results and analysis(5)

CIFAR10 Database

In this paper, we randomly select 10000 images for training and the average
performance is reported. The Coiflets orthogonal wavelet transform and
Daubechies orthogonal wavelet transform are performed on the original images
to generate the two-view samples as drawn in Figure. 5.

(a) Original "Frog’ image (b} The Coiflets wavelet map (c) The Daubechies wavelet map

Figure. 5 The original image, Coiflets and Daubechies orthogonal
wavelet maps in the CIFAR10
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‘ Experimental results and analysis(6)

TABLE IV
THE PERFORMANCE WITH DIFFERENT ALGORITHMS ON
THE CIFAR10 DATABASE

Methods Performance
DDCCANet 62.05%
DCCANet [10] 60.00%
CCANet|9] 53.50%
PCANet [17] 58.01%
DCTNet [24] 56.23%
RandNet [20] 45.11%
LDANet [25] 51.42%

Wide ResNet [30] 60.00%
VGG-16 [31] 56.00%
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Conclusions

This paper presents a DDCCANet with application to image
classification.

To extract more discriminant information between different data
sets, the within-class and between-class correlation matrices are
employed and optimized jointly.

Benefiting from the strengths of DDCCANZet, it is capable of
improving the quality of feature representation from original images.

Experimental results demonstrate its superior performance on image
classification.
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