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Experiment Results

Loss Function Backbone Model MNIST CIFAR-100 Cars-196
CE Loss VGG16/ResNetl8 97.43/97.52 74.49/77.38 88.02/85.77
Focal Loss VGG16/ResNetl8 97.64/97.68 74.46/77.63 88.21/85.98
A-softmax Loss VGG16/ResNetl8 98.10/98.32 T4.55/77.78 90.02/87.22
MC Loss VGG16/ResNetl8 98.20/98.45 72.51/70.18 92.80/-
ICAL VGG16/ResNetl8 97.83/98.21 74.79/77.71 89.32/86.67
FICAL VGG16/ResNetl8 98.22/98.40 74.98/78.18 89.70/87.38
CC-Loss VGG16 + CAM/ResNetl8 + CAM  98.32 + 0.08/98.52 + 0.09 75.49 + 0.15/78.23 + 0.07 91.46 + 0.09/88.41 + 0.06

Cross Entropy Loss

CC Loss
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Conclusions

* Dynamic channel selection for each class

* Maximize intra-class compactness and inter-class separability

* Improvement on three datasets and two backbones
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