
A Base-Derivative Framework for Cross-Modality RGB-Infrared Person Re-Identification

Presenter: Ziling Miao Date: Dec. 10, 2020

Motivation

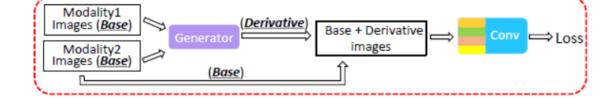


Fig. 2 proposed base-derivative network

Fig. 1 Different networks for RGB-IR person Re-ID.

Method

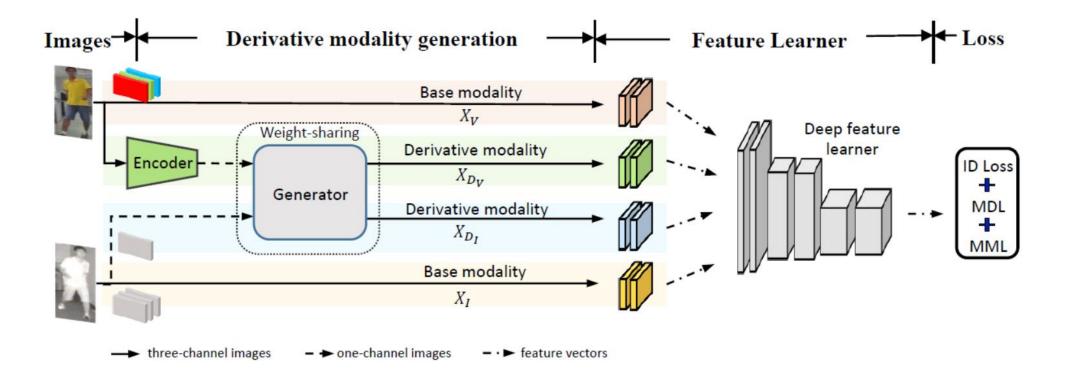


Fig. 3 The overall framework of our base-derivative network.

Method

Multi-mode intra-modality loss :

$$L^{M}_{intra-tri} = \sum_{i}^{N} \left[\alpha_{1} + \max_{\substack{j=1,...,N\\y_{i}=y_{j}}} D(f_{i}, f_{j}) + \min_{\substack{k=1,...,N\\y_{i}\neq y_{k}}} D(f_{i}, f_{k}) \right]_{+}$$

Multi-directional cross-modality loss :

$$L^{M_1 \leftrightarrow M_2}_{int \, er - tri} = L^{M_1 \rightarrow M_2}_{int \, er - tri} + L^{M_1 \leftarrow M_2}_{int \, er - tri}$$

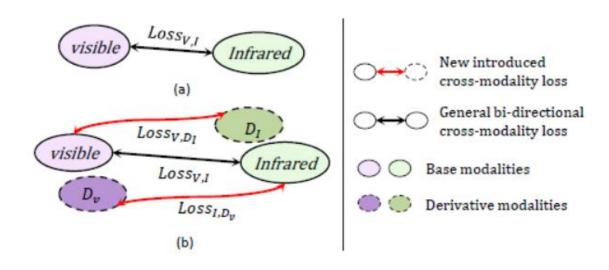


Fig. 4 Cross-modality constraints.

Experiments and Results

Table 1: COMPARISON RESULTS(%) AT RANK r WITH THE STATE-OF-THE-ARTCROSS-MODALITY RE-ID METHODS ON THE SYSU-MM01 DATASET.

Methods		All-s	earch		Indoor-search				
Methods	R1	R10	R20	mAP	R1	R10	R20	mAP	
Zero-Padding [20] ICCV17	14.8	54.12	71.33	15.95	20.58	68.38	85.79	26.92	
HCML [7] AAAI18	14.32	53.16	69.17	16.16	24.52	-	-	30.08	
D-HSME [10] AAAI19	20.68	62.74	77.95	23.12	-	-	-	-	
eBDTR [6] TIFS17	27.82	67.34	81.34	28.42	32.46	77.42	89.62	42.46	
cmGAN [24] IJCAI18	26.97	67.51	80.56	27.8	31.63	77.23	89.18	42.19	
D ² RL [12] _{CVPR19}	28.9	70.60	82.40	29.20	-	-	-	-	
MAC [8] MM19	33.26	79.04	90.09	36.22	33.37	82.49	93.69	44.95	
MSR [9] TIP19	37.35	83.40	93.34	38.11	39.64	89.29	97.66	50.88	
AlignGAN [13] ICCV19	42.4	85.00	93.70	40.7	45.9	87.6	94.4	54.3	
Hi-CMD [23] CVPR20	34.94	77.58	-	35.94	-	-	-	-	
JSIA [25] AAAI20	38.10	80.7	89.9	36.9	43.8	86.2	94.2	52.9	
Ours	51.05	87.75	94.43	49.63	55.93	91.55	96.95	63.38	

Table 2: COMPARISON RESULTS(%) WITH THE STATE-OF-THE-ARTCROSS-MODALITY RE-ID METHODS ON THE REGDB DATASET.

Methods	visible2thermal							
Methods	R1	R10	R20	mAP				
Zero-Padding [20] ICCV17	17.75	34.21	44.35	18.90				
HCML [7] AAAI18	24.44	47.53	56.78	20.08				
eBDTR [6] TIFS19	34.62	58.96	68.72	33.46				
MAC [8] MM19	36.43	62.36	71.63	37.03				
D ² RL [12] CVPR19	43.4	66.10	76.30	44.1				
MSR [9] TIP19	48.43	70.32	79.95	48.67				
D-HSME [10] AAAI19	50.85	73.36	81.66	47.00				
AlignGAN [13] ICCV 19	57.9	-	-	53.6				
XIV [16] AAA120	62.21	83.13	91.72	60.18				
Hi-CMD [23] CV PR20	70.93	86.39	-	66.04				
Ours	80.67	87.72	90.45	78.83				

Experiments and Results

Table 3: COMPARISON RESULTS(%) WITH THE BASELINE AND THE AGW USINGTHE SAME BACK-BONE ON THE SYSU-MM01 AND REGDB DATASETS.

	Day	gDB	SYSU-MM01							
Methods	Reg	gDb	all-se	earch	indoor-search					
	R1	mAP	R1	mAP	R1	mAP				
Baseline	65.79	64.69	42.83	41.97	47.66	56.50				
AGW [22] 2020	70.05	66.37	47.50	47.65	54.17	62.97				
Ours	80.67	78.83	51.05	49.63	55.93	63.38				

Table 4: Ablation study on the sysu and regdb dataset. 'B' means 'baseline' and the superscript represents different types of MML and MDL LOSS.

Matheat			Loss						RegDB		SYSU-MM01					
$\begin{tabular}{ c c c c c } \hline Modulity \\ \hline I & V & D_I & D_V \\ \hline \end{array}$	ID	MML	MDL				KegDb		all-search		indoor-search					
	V	D_I	D_V		WINL	I,V	V,D_I	I, D_V	D_I, D_V	R1	mAP	R1	mAP	R1	mAP	
B1	✓	√	X	×	<	×			×		45.34	39.79	33.49	33.69	36.82	47.14
B2	✓	✓	×	×	✓	✓	✓	×	×	×	65.79	64.69	42.83	41.97	47.66	56.50
	Ours															
B2+MML+MDL ¹	√	~	 Image: A start of the start of	×	✓	✓	✓	✓	×	×	79.98	77.76	41.58	42.33	46.02	55.11
B2+MML+MDL ²	√	✓	×	 ✓ 	<	✓	✓	×	✓	×	75.42	74.17	48.14	47.06	53.97	62.15
B2+MML+MDL ³	√	-	 Image: A set of the set of the	-	✓	✓	✓	✓	✓	✓	79.21	76.85	50.66	49.64	56.57	64.11
B2+MML+MDL ⁴	√	√	✓	-	✓	✓	✓	✓	✓	×	80.67	78.83	51.05	49.63	55.93	63.38

Conclusion

- A base-derivative framework for cross-modality person Re-ID is proposed.
- Multi-mode intra-modality loss and multi-directional cross-modality loss are designed to promote the reduction of intra- and cross-modality discrepancy.

Thanks!