ICPR (Milan-2020-online)

Learning to Sort Handwritten Text Lines in Reading Order through Estimated Binary Order Relations

Lorenzo Quirós, Enrique Vidal

Pattern Recognition and Human Language Technology Research Center Universitat Politècnica de València, Spain

{loquidia,evidal}@prhlt.upv.es

January 14th, 2020

Motivation

Omflande Kopershilling quilleres. Dalum Jom i Brmansky?

- Advances in Handwritten Text Recognition and Document Layout Analysis make it possible to extract data from digitized documents.
- But, without the reading order that data cannot be transformed into information.

Proposed Approach

- Traditional methods are mainly based on heuristics and deeply dependent on domain knowledge.
- The structure of handwritten text documents commonly does not follow a standard structure but the art of the writer.

- We propose to address the problem as a pair-wise probabilistic sorting problem, at baseline level.
- Order-relation operator is learned by a supervised machine learning algorithm.

Proposed Approach [cont...]

Let S be a set of n baselines of a page image. Obtain a permutation z of S that renders its elements (baselines) in reading order.

$$\mathbf{z} = (s_1, \nu_1), \ldots, (s_n, \nu_n), \nu_i$$
 the index of s_i

Proposed solution:

Addressed as a pair-wise probabilistic sorting problem; Step 1: lets define the pair-wise relations

$$([s_i, s_j], y), \quad y = \begin{cases} 1 & \text{if } \nu_i < \nu_j \\ 0 & \text{otherwise} \end{cases} \quad 1 \le i, j \le n, \ i \ne j$$

Then we estimate the conditional distribution $P(y | s_i, s_j)$.

Proposed Approach [cont...]

Step 2: sort baselines

$$\begin{split} H &= [h_{s',s}] \in \mathbf{R}^{n \times n}, s', s \in S \\ h_{s',s} &= \begin{cases} \arg\max_{y \in \{0,1\}} P(y \mid s', s) & \text{if } s' \neq s \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Then sort the rows of H by the number of zeros on it:

$$\nu_i^{\star} = \sum_{j=1}^n (1 - h_{s_i, s_j}), \quad 1 \le i \le n$$
$$\mathbf{z}^{\star} = (s_1, \nu_1^{\star}), \dots, (s_n, \nu_n^{\star})$$

Order operator estimator

RDF:

- trained for each dataset using all the possible pairs of baselines per page
- validation set was reserved to select the model hyperparameters
- number of decision trees was set to 10
- maximum depth of each tree was set to 10

MLP:

- · composed of only one hidden layer
- the number of hidden neurons was set to twice the number of input features
- ReLU as activation function
- ADAM optimizer and a learning rate of 0.001
- training pairs were randomly generated on the fly.

Datasets

Quantitative Results

Table: Results for OHG, NAF and ABP datasets. Average over 10 experiments is reported for each metric, normalized Spearman Footrule ($\rho(t, \nu)$) and Kendall's tau ($\overline{K}(t, \nu)$) distance (in %), absolute Kendall's tau distance ($K(t, \nu)$).In all the metrics the lower the better.

dataset	model	$ ho(oldsymbol{t},oldsymbol{ u})$	$\overline{K}(oldsymbol{t},oldsymbol{ u})$	$K(oldsymbol{t},oldsymbol{ u})$
OHG	TDLR	2.91	1.49	12.97
	RDF	0.74	0.39	3.69
	MLP	0.67	0.34	3.31
FCR	TDLR	31.84	17.6	606.97
	RDF	0.95	0.54	21.64
	MLP	0.94	0.51	16.11
ABP	TDLR	10.93	7.67	3953.00
	RDF	6.36	3.94	2623.20
	MLP	7.83	4.93	2936.10

Qualitative Results: OHG

Figure: Two examples (left-right) of results obtained on OHG dataset where ground-truth is depicted in green and the hypothesis in blue for the TDLR approach, red for RDF and violet for MLP.

Qualitative Results: FCR

Figure: Two examples (left-right) of results obtained on FCR dataset where ground-truth is depicted in green and the hypothesis in blue for the TDLR approach, red for RDF and violet for MLP.

Qualitative Results: ABP

Figure: Two examples (left-right) of results obtained on ABP dataset where ground-truth is depicted in green and the hypothesis in blue for the TDLR approach, red for RDF and violet for MLP. (TDLR approach is dropped to improve readability)

Conclusions

- We have introduced an automatically learned binary order-relation operator and demonstrated their effectiveness to solve the reading order problem in handwritten text documents.
- Experiments were carried out using three complex datasets and two different binary classifiers, with promising results in homogeneous datasets such as OHG and FCR.
- Although, further work has to be done in order to improve the binary classifier to handle heterogeneous datasets like ABP.

Future Work

- Explore more powerful models for heterogeneous datasets as well as more complex features, such as the probabilistic index of each text line.
- Equally important is to extend the proposed method to take into account the full context of each page.

Thanks for Your Attention !