VITON-GT: An Image-based Virtual Try-On Model with Geometric Transformations

Matteo Fincato1, Federico Landi1, Marcella Cornia1, Fabio Cesari2, Rita Cucchiara1

1University of Modena and Reggio Emilia, 2YOOX NET-A-PORTER GROUP

Email: 1\{name.surname\}@unimore.it, 2\{name.surname\}@ynap.com
• We propose a novel architecture for image-based 2D single-pose virtual try-on called **VITON-GT** (VIrual Try-ON with Geometric Transformations).

• The proposed model includes two different components: a two-stage geometric transformation module and a transformation-guided try-on module.
We employ two different geometric transformations, namely affine and thin-plate spline, to warp the in-shop image \(c \) of a particular garment.

- We compute the parameters \(\theta_1 \) for the affine transformation \(T_1 \).
- We perform regression to predict the parameters \(\theta_2 \) for the TPS transformation \(T_2 \).
- Final loss:
 \[
 L_{GT} = \lambda_1 L_{T_1} + \lambda_2 L_{T_2}
 \]
We generate an output image \hat{I} representing the reference person wearing c by employing a U-Net architecture.

We apply the previous learned spatial transformations in the clothes branch.

To guide the generation of the final image we implement three different losses: a L_1 loss, a perceptual loss and an adversarial loss.

$$L_{TON} = \rho_1 L_{ton} + \rho_2 L_{vgg} + \rho_3 L_{adv}$$
Warping Results

<table>
<thead>
<tr>
<th>Try-on Garment</th>
<th>Target Model</th>
<th>CP-VTON [1]</th>
<th>VITON-GT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>FID</th>
<th>KID</th>
<th>IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP-VTON [1] (TPS only)</td>
<td>101.12</td>
<td>6.80±0.67</td>
<td>3.31±0.35</td>
</tr>
<tr>
<td>VITON-GT (Affine + TPS)</td>
<td>59.53</td>
<td>3.27±0.48</td>
<td>3.40±0.22</td>
</tr>
</tbody>
</table>

- Our model outperforms CP-VTON [1] on all the evaluation metrics.
- The affine transformation helps the TPS generating better warped clothes.
- Reduced artifacts and distortions.

Try-On Results

- Reduced distortions while maintaining textures.
- Increased realism of the final images.
- Preserving details and characteristics of the original clothes.

Results on Out-of-Domain Clothes

Try-on Garment Target Model CP-VTON [1] VITON-GT

Try-on Garment Target Model CP-VTON [1] VITON-GT

Try-on Garment Target Model CP-VTON [1] VITON-GT

<table>
<thead>
<tr>
<th>Model</th>
<th>Short-Sleeve T-Shirts</th>
<th>Long-Sleeve T-Shirts</th>
<th>Sleeveless T-Shirts</th>
<th>Shirts</th>
<th>Sweatshirts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FID</td>
<td>KID</td>
<td>IS</td>
<td>FID</td>
<td>KID</td>
</tr>
<tr>
<td>CP-VTON [1]</td>
<td>23.81</td>
<td>0.86±0.16</td>
<td>2.41±0.21</td>
<td>31.92</td>
<td>1.85±0.33</td>
</tr>
<tr>
<td>VITON-GT (no FT, no Adv. Loss)</td>
<td>22.11</td>
<td>0.76±0.16</td>
<td>2.54±0.12</td>
<td>23.74</td>
<td>0.89±0.22</td>
</tr>
<tr>
<td>VITON-GT (no Adv. Loss)</td>
<td>20.95</td>
<td>0.61±0.16</td>
<td>2.63±0.17</td>
<td>20.02</td>
<td>0.62±0.16</td>
</tr>
<tr>
<td>VITON-GT</td>
<td>20.73</td>
<td>0.57±0.15</td>
<td>2.65±0.14</td>
<td>20.83</td>
<td>0.64±0.17</td>
</tr>
</tbody>
</table>

• We have presented VITON-GT, a new image-based virtual try-on model that integrates multiple geometric transformations of the input clothes during the generation of the try-on result.

• Through extensive experiments on two different datasets, we have demonstrated the effectiveness of our solution w.r.t. previously proposed methods.
Thank you!

Matteo Fincato1, Federico Landi1, Marcella Cornia1, Fabio Cesari2, Rita Cucchiara1

1University of Modena and Reggio Emilia, 2YOOX NET-A-PORTER GROUP

Email: 1\{name.surname\}@unimore.it, 2\{name.surname\}@ynap.com